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Abstract 
Floods are among the natural disasters that cause human hardship and economic loss. 

Establishing a viable flood forecasting and warning system for communities at risk can mitigate 

these adverse effects. However, establishing an accurate flood forecasting system is still 

challenging due to the lack of knowledge about the effective variables in forecasting. The 

present study has indicated that the use of artificial intelligence, especially neural networks is 

suitable for flood forecasting systems (FFSs). In this research, mathematical modeling of flood 

forecasting with the application of Artificial Neural Networks (ANN) and data fusion technique 

were used in estimating the flood discharge. Sensitivity analysis was performed to investigate 

the significance of each model input and the best MLP ANN architecture. The data used in 

developing the model comprise discharge at different time steps, precipitation and antecedent 

precipitation index for a major river basin. Application of model on a case study (Karun River in 

Iran) indicated that rainfall-runoff process using data fusion approach produces results with 

higher degrees of precision. 
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1. Introduction  
Flood protection and awareness have continued to rise on the political agenda over the last 

decade accompanied by a drive to ‘improve’ flood forecasts (Demeritt, et al. [5]; van Berkom, 

[12]). Without a doubt, flood flow information is very important for early warning. Flood flows 

in downstream areas are strongly influenced by upstream conditions. The artificial neural 

network (ANN) model has shown to be appropriate for the above-mentioned problem (Chen et 
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al. [3]). Neural network models possess a distributive processing system and are able to store 

inherent characteristics of data in the form of a large storage for later generalization (French et 

al. [7]). The ANN model has various mathematical compositions capable of modeling extremely 

complex physical systems. It has the potential to be more flexible and less assumption dependent 

approach to act as a simulation model for the hydrologic systems (Sudheer and Jain [11]). In this 

paper, a model has been presented for flood forecasting using data fusion technique and artificial 

neural networks (ANNs). Data fusion is an emerging area of research that covers a broad 

spectrum of application areas ranging from ocean surveillance to strategic warning, and medical 

diagnosis (Hall [8]). The principal objective of data fusion, which is process of combining or 

amalgamating information from multiple sensors and/or data sources, is to provide a solution 

that is either more accurate according to some measure of evaluation, or allows one to make 

additional inferences above and beyond those that could be achieved through the use of single 

source data alone (Dasarathy [4]). Data fusion researches are divided into two board groups. The 

first takes the view that data fusion is the amalgamation of raw information to produce an output, 

while the second advocate a more generalized view of data fusion in which both raw and 

processed information can be fused into useful outputs including higher level decision. See and 

Abrahart used data fusion approach for continuous river level forecasting where data was the 

amalgamation of information from multiple sensors and different data sources (See and Abrahart 

[9]). Abrahart and See evaluated six data fusion strategies and found that data fusion by an 

(ANN) model provided the best solution (Abart and See [1]). Shu and Burn applied (ANN) 

ensembles in pooled flood frequency analysis for estimating the index flood and the 10-year 

flood quintiles (Shu and Burn [10]). Araghinejad et al. [2] applied the combination of data fusion 

technique and probabilistic method to forecast peak discharge of Red River in Canada and 

seasonal stream flow in Zayandeh-rud River in Iran. Despite remarkable studies in this field, 

further investigations need to be conducted to find the effects of various inputs in forecasting 

models. This study considers several combination of the different-input models. These inputs 

range from discharge at different time steps to precipitation and antecedent precipitation index 

(API).  

The remainder of the paper is organized in the following sections: section 2 is associated with 

the methodology of the study. The methodology section explains data fusion method, typical 

ANN model as well as different-input ANN models. In section 3, proposed methodology is 

applied on Karun River in Iran as a case study. Combination of the different ANN model with 

various inputs are tested on this case study. In the last section,  this paper finally gives a 

conclusion according detailed results. 

2. Methodology 

2.1. Data Fusion Methods 
The general equation of a hydrological event forecasting model is  

𝑦𝑖=𝑓(𝑋𝑖) + 𝜀𝑖                                          𝑖 = 1,2, … 𝑛                                                                       (1) 

where X= vector of predictors, y= forecast variable, 𝜀 =model error and n= number of 

observation data. In the case of using multiple models to forecast y, and considering similar 

predictors, Eq. (1) is changed to the following matrix from 

[𝑌𝑖] = [

𝑦𝑖1

𝑦𝑖2

⋮
𝑦𝑖𝑚

] = [

𝑓1(𝑋𝑖)

𝑓2(𝑋𝑖)
⋮

𝑓𝑚(𝑋𝑖)

] + [

𝜀𝑖1

𝜀𝑖2

⋮
𝜀𝑖𝑚

]                                                                                         (2) 
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where m= number of forecast models used to estimate y., [𝑌]= matrix of estimations of 𝑦 

provided by different individual models. Using the data fusion approach, [𝑌] is the sum up to a 

unique estimation of 𝑦.  

2.2. Artificial Neural Networks (ANNs) Model 
Empirical models, particularly (ANNs) are known as powerful tools for function mapping. 

See and Abrahart [1] have suggested the use of ANNs as a data fusion method. The general form 

of this method is 

𝑦𝑖 = 𝑔([𝑌𝑖])                    [𝑌] = [

𝑦𝑖1

𝑦𝑖2

⋮
𝑦𝑖𝑚

] ; 𝑖 = 1, … , 𝑛                                                       (3) 

where g is a non-linear function which maps outputs of different individual forecast models 

to a single output of 𝑦𝑖 using ANN model. ANN models generally are a mathematical model that 

is devised by analogy with biological brain cells. It is a highly interconnected structure 

consisting of an input layer, a hidden layer (or hidden layers), and an output layer. Fig. 1 shows a 

general structure of the neural network with one hidden layer. The nodes (called neurons) 

receive and process input signals and send an output signal to other nodes in the network. The 

output of each node is defined by 

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑖𝑗 . 𝑜𝑖
𝑛
𝑖=1                                                                                                    (4) 

where 𝑛𝑒𝑡𝑗 is the net input information arriving at node 𝑗, 𝑤𝑖𝑗 is the connection strength or 

weight between nodes 𝑖 and 𝑗 and 𝑜𝑗is the activation at node 𝑖. The level of activation is then 

updated using the following sigmoid function 

𝑜𝑗 =
1

1+exp (𝑛𝑒𝑡𝑗)
                                                                                                      (5) 

where 𝑜𝑗is the output at node j.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 A General Architecture of an Artificial Neural Network. 

In the error back propagation algorithm, errors are estimated to observe the performance of 

model and the values of weight are recalculated accordingly. This is referred to as a learning 

process. The error, E, is defined by 
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E=
1

2
∑ ∑ (𝑑𝑝𝑘 − 𝑜𝑝𝑘)2𝐾

𝑘=1
𝑃
𝑝=1                                                                                    (6)                                                    

where 𝑃 is the total number of patterns in the training set, 𝐾 is the total number of output 

nodes, and 𝑑𝑝𝑘  and 𝑜𝑝𝑘  are the desired and calculated outputs at node  𝑗  for pattern p, 

respectively. 

A Multi-Layer Perceptron (MLP) method with back propagation is used here which has 

input, output, and hidden middle layers. 

2.2.1. Model Development 
One of the main aims in design of warning systems is to increase the pre-warning time based 

on accurate simulation of flood inundation levels. Two models were used for this purpose 

𝑄(𝑡) = 𝑓[𝑄(𝑡 − 2), 𝑄(𝑡 − 1), 𝑃𝑖(𝑡), 𝑃𝑖(𝑡 − 1), 𝐴𝑃𝐼(𝑋), 𝑇(𝑋), 𝑇(𝑡 − 1)]                           (7)  
𝑄(𝑡 + 1) = 𝑓[𝑄(𝑡 − 1), 𝑄(𝑡), 𝑃𝑖(𝑡), 𝑃𝑖(𝑡 − 1), 𝐴𝑃𝐼(𝑋), 𝑇(𝑡), 𝑇(𝑡 − 1)]                             (8) 

where Q is the discharge, P is the precipitation, T is the temperature and )(xAPI  is the 

previous precipitation index at previous x time steps and t is the computational time step. The 

previous precipitation index may be obtained from: 

𝐴𝑃𝐼(𝑋) = ∑ 𝑃𝑋−𝑗. 𝐾−𝑗𝑖
𝑗=1                                                                                       (9) 

𝐾 = 𝐸𝑋𝑃(
−𝐸𝑇

𝑊𝑚
)                                                                                                       (10) 

where i  is the number of passed days, K  is the precipitation constant varying between 0.85 

and 0.95, 
jxP 
is the precipitation at day jx   , ET  is the evapotranspiration and Wm  is the 

maximum available soil moisture for evaporation. 

2.2.2. Data preprocessing 
Since input variables appear in different scale, therefore the values of inputs should be 

changed in the same scale in a specified interval. Following equations can be used to normalize 

input values between (0.05-0.95): 

  𝑋𝑛 = 0.05 + 0.9
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                            (11) 

where, 𝑋𝑛 is the normalized value of input 𝑋, 𝑋𝑚𝑖𝑛 is the minimum of the input 𝑋 and 𝑋𝑚𝑎𝑥 

is the maximum of the input 𝑋. 

2.2.3. Evaluating the performance of the model 
In order to evaluate the performance of ANN models, Nash-sutcliffe, Mean Relative Error 

and correlation coefficient parameters are used as following equations: 

𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠𝑖−𝑄𝑠𝑖𝑚𝑖)2𝑛

𝑖=1

∑ (𝑄𝑜𝑏𝑠𝑖−𝑄̅𝑜𝑏𝑠)2𝑛
𝑖=1

                                                                           (12) 

𝑀𝑅𝐸 =
∑ |

𝑄𝑜𝑏𝑠𝑖−𝑄𝑠𝑖𝑚𝑖
𝑄𝑜𝑏𝑠𝑖

|𝑛
𝑖=1

𝑛
                                                                                   (13) 

  𝑅 =
𝑛 ∑ (𝑄𝑜𝑏𝑠𝑖.𝑄𝑠𝑖𝑚𝑖)𝑛

𝑖=1 −(∑ 𝑄𝑜𝑏𝑠𝑖
𝑛
𝑖=1 ).(∑ 𝑄𝑠𝑖𝑚𝑖

𝑛
𝑖=1 )

√[𝑛.(∑ 𝑄𝑜𝑏𝑠𝑖
2𝑛

𝑖=1 )−(∑ 𝑄𝑜𝑏𝑠𝑖
𝑛
𝑖=1 )

2
].[𝑛.(∑ 𝑄𝑠𝑖𝑚𝑖

2𝑛
𝑖=1 )−(∑ 𝑄𝑠𝑖𝑚𝑖

𝑛
𝑖=1 )

2
]

                                         (14)  

where, 𝐸 is the Nash-Sutcliffe parameter, 𝑀𝑅𝐸 is the mean relative error, 𝑅 is the correlation 

coefficient, 𝑄𝑜𝑏𝑠𝑖 is the 𝑖th observed discharge , 𝑄𝑠𝑖𝑚𝑖 is the 𝑖th simulated discharge and 𝑛 is the 

number of data. 
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3. Case study 
The case under examination was that of Karun River in Khuzestan province, southwest of 

Iran (Fig.. This is the longest river of Iran (about 950Km) stretched from longitude 50°18′28′′𝐸 

and latitude 31°35′1′′𝑁to longitude 48°9′54′′𝐸 and latitude 39°25′40′′𝑁. Karun supplies water 

demand of the important cities located along the river such as Ahvaz and Shushtar. Karun river 

collects the runoff of a 62570 𝑘𝑚2-basin and conveys to the Persian Gulf (Emamgholizade et al 

[6]). Therefore, there is a potential of flood risk in cities in the vicinity of Karun. Therefore flood 

management options such as flood warning systems should be established for Karun River. In 

this paper, data were gathered from hydrometric stations along the Karun (See Fig. 2 for their 

locations).   The input data are those that had been mentioned in section 2.2.1. Out of the total 

observation data, some 5844 days had daily corresponding values which in turn provided 5844 

patterns. 4197 first patterns were chosen for training and the remaining 1647 patterns for testing 

the neural network. 

 
Fig. 2 location of the study area 

4. Application of Models and Test of their Reliability 

4.1. forecasting discharge in time step t 
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4.1.1. Model 1 
In this model an MLP network with two inputs of discharge at time steps (t-1) and (t-2) were 

used for training the discharge at time step t. Upon a trial and error procedure the network was 

designed as (2-2-1) i.e. 2 input neurons, 2 neurons at hidden layer and 1 output neuron. Values 

of MRE, E and R
2
 were obtained to be equal to 10.53, 0.815 and 0.797 respectively. Results are 

presented in Figure 2. Scattering of the data around the bisector line as depicted in Fig.3 shows 

that this model cannot efficiently predict flood flow except for a few small floods. In fact, 

applying this model can increase the risk of inaccurate flood forecasting. Fig. 3 also implies that 

considering only discharge at two previous time steps cannot give an accurate prediction of 

floods. 

 
Fig. 3 Observed discharge versus predicted discharge for model 1: a) training data, b) testing data 

 

4.1.2. Model 2 
The second model uses precipitation data from 24 stations along the discharge from the 

previous time step of the output station to simulate the river flow. An MLP network with 25 

inputs was trained to obtain the discharge at time step t. The network design was initially set at 

(25-5-1). Upon sensitivity analysis and optimization, the architecture of the network was 

designed at (14-6-1). Values of MRE, E and R
2
 were obtained to be equal to 12.83, 0.889 and 

0.883 respectively. As it may be seen from Fig. 3, this model performs better as it can predict 

low flow floods with more accuracy. However, large flood flows are not yet predictable (Fig. 4). 
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Fig. 4 Observed discharge versus predicted discharge for model 2: a) training data, b) testing data 

4.1.3. Model 3 
The second model uses precipitation data from 24 stations along the discharge from the 

previous time step of the output station as well as the precipitation index values for the last 4 to 8 

days. Neural network with architecture 29-8-1 was trained using several trials and errors. Based 

on sensitivity analysis, 15 inputs were found as effective inputs for ANN model. Sensitivity 

analysis was accomplished by applying change in one normalized input while the other inputs 

remain constant. As an example, the result of the sensitivity analysis has been shown in Fig. 5. 

Accordingly, an initial MLP network at (29-8-1) was replaced by a network at (15-5-1). Values 

of MRE, E and R
2
 were obtained to be equal to 13.07, 0.967 and 0.905 respectively. Fig.6 shows 

even better results than that obtained in the second model. However, none of these models have 

performed reasonably for predicting large flood flows. The reason may be attributed to the fact 

that these models use time step patterns for both rainy and no rainy days. These were separated 

in the next two models.  

 

 
 

Fig. 5 Sensitivity analysis for Model 5 with initial 29 input variables  
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Fig 6.  Observed discharge versus predicted discharge for model 3: a) training data, b) testing data 

 

4.1.4. Model 4 
Input data for flow on no rainy days include: 𝑄(𝑡 − 1), 𝑄(𝑡 − 2) and 𝐴𝑃𝐼(7). Therefore in 

this model a MLP network with 3 inputs was used for training the discharge at time t. The 

architecture was based on (3-2-1). Values of MRE, E and R
2
 were obtained to be equal to 5.78, 

0.977 and 0.978 respectively (Fig.7). As shown in this figure, flood forecasting with model 4 is 

much more accurate than that with model 2. This implies that the large number of inputs does 

not necessarily improve forecasting.   

 

 
Fig. 7 Observed discharge versus predicted discharge for model 4: a) training data, b) testing data 

4.1.5. Model 5 
Inputs for the fifth model for rainy days were based on data from 13 stations, the outflow 

station discharge at last time step and the precipitation index for the last seven days. The 

network design was set at (15-9-1). Values of MRE, E and R
2
 were obtained to be equal to 

19.10, 0.957 and 0.859 respectively. 

Figure 8 shows that omission of data with high correlation has reduced the correlation factor 

in this case. However, comparison of observed values of peak flood flows indicates higher 

accuracies than those obtained in model 3. 
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Fig. 8 Observed discharge versus predicted discharge for model 5: a) training data, b) testing data 

4.1.6. Combination of Model 4 and Model 5 
The combined model may be readily compared with any individual model. Values of MRE, E 

and R
2
 were obtained to be equal to 9.10, 0.913 and 0.911 respectively. As may be seen in Fig. 

9, this combined model can predict the flood hydrographs more accurately than the first three 

models. Flood predictions are made more accurately whilst both rainy and no rainy days have 

been considered. For more simple comparison, errors and R
2
 have been listed in table 1. 

 
Fig. 9 Observed discharge versus predicted discharge for combined model: a) training data, b) testing data 

 
Table 1. The value of errors for models 

MRE E R
2 

Model 
Test Training Test Training Test Training 

10.53 7.87 0.815 0.862 0.897 0.856 1st 

12.83 6.69 0.889 0.959 0.883 0.96 2
nd

 

13.07 8.61 0.967 0.948 0.905 0.946 3
rd

 

5.78 2.92 0.977 0.999 0.978 0.984 4
th

 

19.10 10.96 0.957 0.999 0.859 0.957 5
th

 

9.10 5.76 0.913 0.971 0.911 0.969 
Combined 

model 
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4.2. forecasting discharge in time step t+1 
Input variable considered for this ANN model, are discharges in rainy days, precipitation data 

form 24 stations, discharge in previous time step as well as 𝐴𝑃𝐼 data. After several trials and 

errors, ANN model was set with 26 inputs with architecture 26-8-1 to forecast 𝑄(𝑡 + 1) . 

Sensitivity analysis showed 𝑄(𝑡 − 1) was the most effective input parameters in developed 

ANN model. Results of the sensitivity analysis has been shown in Fig. 10. Accordingly, ANN 

model with architecture 15-6-1 was developed using several trial-and-error attempts. Values of 

𝑀𝐴𝐸, 𝐸 and 𝑅2 were obtained to be equal to 20.83, 0.865 and 0.82 respectively. For graphical 

assessment, Fig. 11 shows predicted discharge by ANN model against observed discharge. The 

results show the appropriate performance of ANN model to predict large flood flows. 

 

 
Fig. 10. Sensitivity analysis for ANN model with 26 input variables to forecast 𝑄(𝑡 + 1) 
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Fig. 11. Observed discharge versus predicted discharge for forecasting 𝑄(𝑡 + 1): a) training data, b) 

testing data 

4. Conclusion 
Establishing an accurate flood warning system is vital option for timely flood management.  

Artificial neural network are typically considered as a suitable method to model physical 

phenomena such as riverine flood forecasting. However, determination of the effective inputs for 

ANN modelling is significant. In this research a neural network model and a data fusion 

technique were used to predict flood flows in the Karun River. Five ANN models were 

developed with different inputs combinations.  Data for the fourth and fifth model were 

combined based on input variables for discharge, precipitation and the precipitation index for the 

previous seven days. In spite of variety of input data, the resulting model showed greater 

accuracy in predicting floods compared to models with less variety of input variables. Sensitivity 

tests were utilized to omit inputs with less effects on prediction of floods resulting in even 

greater accuracy. 

Notations 
𝑋= vector of predictors 

𝑌= forecast variable 

𝜀 =model error 

𝑛= number of observation data 

[𝑌]= matrix of estimations of 𝑦 provided by different individual models 

𝑛𝑒𝑡𝑗  = the net input information arriving at node 𝑗 

𝑤𝑖𝑗 = the connection strength or weight between nodes 𝑖 and 𝑗 

𝑜𝑖= the activation at node 𝑖 
𝑜𝑗= the output at node 𝑗 

𝑃= the total number of patterns in the training set 

 𝐾= the total number of output nodes, 

𝑑𝑝𝑘 and 𝑜𝑝𝑘 = the desired and calculated outputs at node 𝑗 for pattern 𝑝 

𝑋𝑛 = the normalized value of input 𝑋 

𝑋𝑚𝑖𝑛= the minimum of the input 𝑋  

𝑋𝑚𝑎𝑥 = the maximum of the input 𝑋. 

𝐸 = Nash-Sutcliffe parameter 
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𝑀𝑅𝐸 = mean relative error 

𝑅= correlation coefficient 

𝑄𝑜𝑏𝑠𝑖 = 𝑖th observed discharge  

𝑄𝑠𝑖𝑚𝑖 = 𝑖th simulated discharge  

𝑛 = the number of data. 

𝑄 = the discharge 

 𝑃= the precipitation 

 𝑇= the temperature 

 )(xAPI = the previous precipitation index at previous x time steps and 

 𝑡 = the computational time step 

K = the precipitation constant varying between 

jxP 
= the precipitation at day jx   

ET = the evapotranspiration 

Wm= the maximum available soil moisture for evaporation. 
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