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Abstract 
In this study, a simulation-optimization model is developed for deriving operational rule-curves 

in drought periods. To each reservoir, two rule-curves with adjustable monthly levels are 

introduced dividing the reservoir capacity into three zones between the normal water level and 

minimum operation level. To each zone of the reservoir and for each month of the year a 

hedging coefficient is introduced that determines the release from the reservoir. Accordingly, an 

optimization problem is developed in which the objective is the minimization of water demands 

deficits in drought and the decision variables are the rule-curves levels and hedging coefficients. 

For optimization, a genetic algorithm equipped with a self-adaptive constraint handling strategy 

is used. To evaluate the objective function and constraints violations, the flexible and widely-

used WEAP (Water Evaluation and Planning) simulation model is exploited and coupled with 

the optimization solver. The model is then applied to the Zohreh three-reservoir system in the 

southwest of Iran and compared to the Standard Operation Policy (SOP). According to the 

sustainability indices for the system operated in drought, the obtained operating rule-curves are 

found significantly superior to the SOP. As a result of applying the rule-curves, the modified 

shortage index (MSI) and vulnerability (extent) of the system are respectively improved by 22% 

and 28% compared to the SOP. Consequently, the developed policy application resulted in 

longer periods of deficit (but less severe) as shown by decrease in reliability (5%) and resilience 

(40%) indices. 
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1. Introduction  
Handling the operational challenges has been always a serious concern for reservoirs 

operators, but when a water resources system is suffering from water scarcity, demands are more 

strongly competing for water and the system operation becomes even more complicated and 

challenging.  

Application of simulation and optimization models has shown great advances in planning and 

management of water resources problems. Currently, there are several softwares like HEC3, 

HEC5, HEC-ResSim, MIKEBASIN, RIBASIM, WATHNET, OASIS, ARSP, CalSim, 

RiverWare, MODSIM, WRAP, SWD SUPER and WEAP that can simulate operation of a 

reservoir system with its all components in details. A simulation model can evaluate the system 

performance for any decision on the reservoirs releases and operations over a certain time period 

and return the values of objective functions and constraint violations introduced to the system.  

A reservoir system is operated following prescriptions on the system releases as a function of 

time and available water. These prescriptions or more precisely rule-curves are traditionally 

derived through intensive simulation ‎techniques [1], but to derive optimum operating ones for a 

multi-reservoir system, it is required to develop and solve optimization models. The optimization 

systematically changes the operational parameters and the simulation model evaluates the effects 

of each change on the system operation over a long period. This process continues until the best 

feasible performance of the reservoir system is achieved. This is the main skeleton of every 

simulation-optimization model that has recently become very popular and well-developed for 

solving a variety of water resources problems. In this context, many researchers have tried to 

cope with the challenges associated with the operation of reservoir systems in arid and semi-arid 

areas as well as during drought periods. The existing approaches are different in concept ranging 

from simplified rules of thumb to sophisticated model-based operating rules. 

To minimize the impacts of a drought event, water is stored in the system for future even if 

enough water exists to satisfy the current demands. The purpose of a hedging decision in a 

reservoir operation is to lessen the burden of water scarcity in the future by distributing the 

demands' deficits over an extended period of operation. In general, hedging rules can be 

categorized into two main groups of continuous and discrete methods. Through the continuous 

approach, the decisions on the amount of water to be rationed are mathematically represented by 

a linear, nonlinear or fuzzy function [2-13].  Whereas, in the discrete methods the decisions are 

made based on the discrete representation of the reservoir and water resources conditions [1, 14-

17]. Many investigations with the aid of simulation and optimization models were published to 

extend and modify these approaches. These studies put forth and answered two key questions of, 

"when to start rationing" and "how much rationing". However, this issue is highly case-

dependent‎and‎needs‎a‎thoughtful‎insight‎into‎the‎system’s‎objectives,‎limitations,‎hydrology‎and‎

other specifications.  

An important concern in deriving hedging rules is the employment of proper solvers. The 

applied methods are the mixed integer programming [1-2, 14-15], dynamic programming [10], 

Markov Model [6, 7] and recently, heuristic nature-inspired algorithms [8-9, 11-12, 16-18]. For 

the sake of dimensionality problems associated with the large-scale multi-reservoir systems, 

some investigations were inevitably restricted to single-reservoir case studies or short-term time-

series [2-10, 14-15, 19]. 

Some studies were carried out based on surrogate simulation models rather than simulating 

the system with all details. For example, to make the process of simulation-optimization more 

efficient Dariane et al., [5], trained and substituted an artificial neural network for the system 

simulation and Guo et al., [16], used an equivalent reservoir for a multi-reservoir system and 
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assumed constant weighting factors for different types of water supplies. However, issues like 

the interaction between the reservoirs and other components of the system as well as the role of 

long-term data encompassing different hydrological conditions are very significant in deriving 

the system operating rules. Paying attention to these concerns, Taghian et al., [17], developed a 

comprehensive long-term simulation model based on the ARSP for a three-reservoir system 

facing with severe droughts. All water demands were also simulated in the model using the 

network flow scheme. They proposed a discrete hedging rule by hybridizing a genetic algorithm 

for hedging optimization and a linear programming model for allocation water to downstream 

demands. In this context, the present study aims at developing a complete simulation-

optimization model for multi-reservoir systems in drought periods with some modifications. The 

powerful, comprehensive and easy-to-use simulation software, WEAP is used to serve as 

objective function and constraint values provider. Then, the problem is formulated as a 

constrained nonlinear optimization problem and is solved using a self-adaptive Genetic 

Algorithm (GA). The model is applied to a three-reservoir case study in Iran, and the results are 

discussed and compared with those obtained by the SOP. 

2. Case study and problem statement 
As a case study, drought-stricken Zohreh river system located in the south-western of Iran 

with an area of 15460 squared ‏kilometer is studied. The schematic of the system is shown in 

Figure 1. The system comprises of three reservoirs, eight input stream flows, thirteen irrigation 

networks, three public demands and two minimum flows. The conservation storage volumes for 

Kosar, Chamshir, and Kheirabad reservoirs are respectively, 418, 1862, and 105 million cubic 

meters (mcm) as presented in Table 1 in details. 

 
Table 1. Properties of hydropower plants 

Properties of dam Chamshir Kosar Kheirabad 

Normal level (meter above sea level) 598 625 259.6 

Minimum level of operation (meter 

above sea level) 
543.7 580 238 

Volume storage in min. level (mcm) 454.5 74.2 0.93 

Volume storage in normal level (mcm) 2316.7 492.8 106.3 

Installed capacity (Mega Watt) 165 - 2.5 

Plant factor (%) 25 - - 

Plant efficiency (%) 91 - 85 

Maximum turbine flow (cms) 144.4 - 7.26 
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Figure 1. Schematic configuration of the water supply system 

 

 
Figure 2. Total annual inflow and demand of the system 
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The total annual inflow to the system (sum of all reservoirs' inflows) and the total demand are 

depicted in Figure 2. The average value of total annual inflow is about 3247 mcm and the 

average value of the last seven years (2007-2013) is 1330 mcm. Comparison of these two 

average parameters reveals two long periods of drought in the initial and the last stages of the 

time-series. Target values for demands are given based on the planned water demand for the 

future horizon (2259 mcm), distributed as 73% for agriculture, 16% for the minimum flow, and 

11% for public demands (Table 2). 

 

Table 2. Characteristics of demands 

Demand title Type Annual demand (mcm) 

A1 Agriculture 20 

A2 Agriculture 480 

A3 Agriculture 60 

A4 Agriculture 77 

A5 Agriculture 49 

A6 Agriculture 138 

A7 Agriculture 114 

A8 Agriculture 28 

A9 Agriculture 38 

A10 Agriculture 48 

A11 Agriculture 365 

A12 Agriculture 101 

A13 Agriculture 132 

P1 Public 32 

P2 Public 10 

P3 Public 210 

E1 Minimum flow 315 

E2 Minimum flow 41 

SUM 2259 

3. The simulation-optimization model 
After construction of large-scale water storage projects, attention must be on improving the 

operational effectiveness and efficiency. To achieve this goal, a simulation-optimization model 

is developed in this study as a general framework for drought management (Figure 3). To this 

end, WEAP is embedded into a genetic algorithm and the hedging rule is included.  

In addition to optimizing water allocation, this work aims at mitigating the drought 

consequences in the reservoir system. The objective is to alleviate the effects of water shortage 

by rationally distributing water in a longer horizon. In operation of this system, there are 74 

decision variables including, two monthly rule-curves coordinates for each dam (Chamshir, 

Kheirabad and Kosar dams) and two hedging factors for the whole system. The objective 

function is to minimize the modified shortage index as Eq. 4. The performance constraints e.g. 

rationing rule-curve attributes are added in the constraint handling procedure of optimization 

algorithm. The physical constraints, mass balance, performance constraints and hedging rules are 

the main components that are included. To solve the problem, a constrained optimization 

algorithm is coupled with a standard simulation model as illustrated in Figure 3. All the physical 

constraints like the maximum dam release, reservoir storage, and channel capacity are handled in 

the general simulation model. To evaluate the long-term performance of reservoir system 

operation, 58-year (from 1955 to 2013) time-series of monthly inflows are used, resulting in a 

total of 696 months. In what follows, the simulation and optimization models are introduced in 

details and the results of case study optimization are presented and discussed.  
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Figure 3. Conceptual model 

3.1. Simulation Model (WEAP)  
Reservoir simulation models are based on the mass balance in the system of reservoirs and 

demands. WEAP calculates water mass balance for every node and link in the system on a 

monthly time step. Implementing hedging rules in the simulation model adds three constraints 

(Equations 1, 2 and 3) to it. In drought periods, the inflow may not be adequate to keep the water 

storage level (St) on or above the first rule-curve if the target demand is satisfied. Releasing 

current available water from the reservoir to completely supply the target delivery may threat 

safe supply in future. Therefore, rationing is introduced to diminish the current reservoir release, 

and retain an adequate amount of water in storage for future consumption. When the initial 

reservoir storage level is between the two rule-curves (in the first hedging zone, 𝑍𝑜𝑛𝑒1), the 

reservoir releases water to meet the first phase of hedging (𝛼1𝐷𝑒𝑚𝑎𝑛𝑑, α1 is the first hedging 

coefficient). For more severe droughts, when the beginning reservoir storage is below the second 

rule-curve (in the second hedging zone, 𝑍𝑜𝑛𝑒2), less water is released from the reservoir to meet 

the second phase of hedging ( 𝛼2𝐷𝑒𝑚𝑎𝑛𝑑 , α2  is the second hedging coefficient ). The 

coordinates of the two rule-curves and hedging coefficients are decision variables which will be 

optimized in the simulation-optimization procedure. 

 
𝑖𝑓 𝑆𝑡 ∉ (𝑍𝑜𝑛𝑒1 𝐴𝑛𝑑 𝑍𝑜𝑛𝑒2) 𝑇ℎ𝑒𝑛 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑 × 100%          (1) 

𝑖𝑓 𝑆𝑡 ∈ 𝑍𝑜𝑛𝑒1 𝑇ℎ𝑒𝑛 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑 × 𝛼1               (2) 

𝑖𝑓 𝑆𝑡 ∈ 𝑍𝑜𝑛𝑒2 𝑇ℎ𝑒𝑛 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑 × 𝛼2               (3) 

3.2. Optimization model 
The Genetic Algorithm starts with a randomly generated group of chromosomes known as 

the population. In each chromosome, there are as many genes as the number of decision 

variables. In this study the number of individuals in each generation was set to 104. In the first 

step, the costs and associated chromosomes are ranked from ‎lowest to highest for the population. 

Survival of the fittest, ‎is translated into discarding the chromosomes with higher costs. 

Therefore, the better chromosomes are selected to continue, while the rest are ‎deleted. The 

selection rate (here 50%) is the fraction of the population that survives for the next step of 

reproduction.  

Mating is reproduction of one or more youngsters from the parents selected in the pairing 
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procedure. The ‎most common form of mating involves two parents producing two children. The 

uniform mating which is adopted here randomly assigns the gene from one parent to one 

offspring and the gene from the other parent to the other offspring. 

In the next step, random mutations alter a certain percentage of the genes in the list of 

chromosomes. Mutation is ‎the second way of a GA exploring a cost surface. It can introduce 

traits, not in the original population ‎and keeps the GA from converging too fast before sampling 

the entire feasible space. The mutation rate was used for 2% of the genes of all the population. 

After the occurrence of mutations, the costs associated with the offspring and mutated 

chromosomes ‎are calculated. The process described above is iterated. The number of generations 

depends on whether an acceptable solution is reached or a ‎number of iterations is exceeded. 

After a while all the chromosomes and associated costs ‎would become the same if it were not for 

mutations. The flowchart in Figure 4 provides an overview of a constrained continuous GA. The 

primary difference with the usual algorithm is the constraint handling procedure which is 

discussed in the constraints section. 

3.2.1. Objective Function 
In the past for drought management, many objective functions were suggested and used, but 

the most used indices are SI and MSI. The shortage index (SI) was presented by the U.S. Army 

Hydrologic Engineering Center [20-21]. Because the SI index is the average of the "annual" 

deficit rate squared, to characterize the "monthly" fluctuations of the hydrologic time series, a 

modified shortage index (MSI) is defined as the following, 

𝑀𝑆𝐼 =
100

𝑛
∑ (

𝑇𝑆𝑡

𝑇𝐷𝑡
)

2
𝑛
𝑡=1                       (4) 

Where 𝑇𝑆𝑡 is shortage in tth period; 𝑇𝐷𝑡 demand in tth period; and 𝑛 number of periods [22]. 

For the energy production, the success or failure in each time step is evaluated based on the 

installed capacity of the hydropower plant. When the generated energy or the equivalent 

minimum volume of water discharge considering plant factor and minimum operation head, in 

that period is less than the installed capacity, a failure is counted. Then the deficit will be the 

difference between the turbine flow and the flow requirement to generate energy as much as 

installed capacity [23]. 

3.2.2. Constraints 
To make the derived rule-curves meet the operational and real situation standards, two points 

must be noticed. First of all, the maximum difference between two consecutive operating 

reservoir storage targets (rule-curve coordinates) must not be more than a defined value [24]. 

This is because refilling and emptying a reservoir and generally fluctuations in reservoirs in the 

real world will follow a supply-demand pattern and its configuration could not be scattered. In 

mathematical expression, this could be written as, 

|𝑆𝑡 − 𝑆𝑡−1| ≤ 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑                       (5) 

Where 𝑆𝑡 and 𝑆𝑡−1 are corresponding to two consecutive operation rule-curve components 

(storage or trigger value here), and 𝑆𝑎𝑙𝑙𝑜𝑤𝑒𝑑  is the maximum allowable difference. Second, 

because at the end of the water year and the start of the new one, no significant hydrologic and 

demand changes are expected to take place in the basin, it is not logical that the difference 

between the first (𝑆1) and the last (𝑆12) components of a rule-curve be noticeable. Therefore, the 

second constraint would be written as follows, 



S. Alahdin, H.R. Ghafouri 

 
AUTUMN 2017, Vol 3, No 2, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

 

54 

 (1 − 𝜀) × 𝑆1 ≤ 𝑆12 ≤ (1 + 𝜀) × 𝑆1                  (6) 

Where, 𝜀 is a small number. To implement these constraints in the algorithm, a method based 

on the preference of feasible solutions over infeasible ones called self-adaptive is used. This 

method is implemented in the selection and ranking process in GA (Figure 4) and has the 

following characteristics: 1) as long as no feasible solution is found, the constraint violation is 

the rank determinant of the individuals; 2) once there is a combination of feasible and infeasible 

solutions in the population, feasible solutions will be ranked higher; and 3) the feasible solutions 

will be ranked based on their objective function values. 

In addition, there are two other points that are considered in the algorithm. First, since no 

project can survive with less than 20% of its demand supplied and on the other side, there is no 

point in rationing with supply more than 80% of the demand, practical and operational view 

suggests that the hedging coefficient cannot be less than 20 or greater than 80 percent. Although 

in theory the allocation outside this range is possible. Second, lots of trial and errors with the 

simulation-optimization model have shown that two rule-curves for each dam reservoir may 

cross each other. Therefore, a mechanism must be devised to go around this issue. To do this in 

the optimization routine after mutation process, the values of the second hedging rule-curve are 

checked and forced to be less than the first phase (Figure 4). 

4. Results 
In order to show the efficiency and clarify algorithm's performance in multi-reservoir system 

mangement, in addition to the objective function value (MSI), other statistical measures like 

reliability, resilience, and vulnerability are also calculated. These criteria are defined as, 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠
                 (7) 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑛 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠
       (8) 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑒𝑥𝑡𝑒𝑛𝑡) = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 𝑔𝑖𝑣𝑒𝑛 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠      (9) 

The system operation performances for the SOP and the developed rule are compared in the 

next tables and figures; they display the long-term system performance and the annual system 

performance during recent failure years. 

Table 3. Long-Term System Performance during the Period 1955–2013 

Index SOP Optimum rule-curve 

α1 - 70.9 

α2 - 35.2 

MSI 5.35 4.13 

Average reliability 69.3 65.5 

Average resilience 26.5 15.8 

Average vulnerability extent 8.7 6.2 
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Figure 4. Flowchart of the proposed simulation-optimization model 
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 The long-term performance criteria are given in Table 3. Comparing the two scenarios, it is 

indicated that total MSI value is improved by 22% in the proposed method. The distribution of 

severe droughts cause neighboring deficit periods join together, nevertheless resilience (which is 

defined as the number of recoveries) decreased from 26.5 to 15.8. Since the idea is to spread 

deficits to smoothen them in a longer horizon that could be more tolerable for the demands, the 

decrease in reliability (5%) is reasoned.  

These points are rechecked and confirmed in Table 4 as well. The developed policy appears 

to be superior to the SOP, which is attributed to the inclusion of hedging rules. The hedging rule 

inherently tends to adjust the demand by rationing before and during the occurrence of severe 

shortages. Therefore, the SOP resulted in a better reliability than the value introduced by the 

model (Tables 3 and 4). The direct result of this kind of management is that the failures are less 

severe but more frequent and therefore, the resilience (the number of system restoration 

regarding to supplied water) is less for the planned policy compared to the SOP.  

Table 4 gives long-term performance criteria for various demand groups. Almost the same 

pattern which was discussed in table 3 is dominating here. The agricultural demand's behavior 

which is accountable for 73% of the total system demand reveals the total demands' behavior. 

The difference in the performance criteria for the two management methods in public, 

environment and hydropower demands are negligible, since they all together are only 27% of the 

whole system demands and therefore model is biased towards fulfilling the agriculture demands.     

Table 4. Long-term performance criteria for various demand groups 

Demand type 
Reliability 

(optimum) 

Reliability 

(SOP) 

resilience 

(optimum) 

resilience 

(SOP) 

vulnerability 

extent  

(optimum) 

vulnerability 

extent  

(SOP) 

Agriculture 68.1 75.1 7.5 23.7 4.8 7.4 

Public 43.1 41.4 24.0 25.0 2.1 2.2 

Environment 93.1 86.2 60.0 47.0 6.9 6.4 

The annual objective function values for the recent drought (Table 5) show that the maximum 

value of MSI is reduced in three different groups of users. This point means that the proposed 

drought management is working well. The biggest difference in MSI values is in hydropower 

demand which is reduced more than 50 units in the 7-year drought. In this table, the hydropower 

objective function values show very informative changes during 2008 to 2012 for the two 

policies, that confirms the idea behind the optimization. In 2008, the optimum model used 

hedging and as a result the MSI value is higher (8.04> 7.06) but by saving water in this year, the 

system benefited in the next four years (21.05-29.17 for optimum and 81.72 to 82.25 for SOP). 

Table 5. Objective function values for various users in recent drought 

Year 

Objective function value   

Agriculture 

(optimum) 

Agriculture 

(SOP) 

Minimum flow 

(optimum) 

Minimum flow 

(SOP) 

Public 

(optimum) 

Public 

(SOP) 

2007 0.47 0.47 0.00 0.00 3.45 3.45 

2008 6.72 1.48 0.05 0.27 15.32 16.45 

2009 28.62 23.24 0.39 0.60 9.89 11.04 

2010 23.92 20.11 0.00 0.17 1.49 2.56 

2011 24.71 31.34 0.07 0.32 7.35 8.83 

2012 17.98 5.03 0.22 0.35 5.34 6.17 

2013 12.44 11.25 0.00 0.03 0.07 0.28 

Max 28.62 31.34 0.39 0.60 15.32 16.45 
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Figure 5. Optimal policy supplied water for the A5 project 

 
Figure 6. SOP supplied water for the A5 project 

 
Figure 7. A5 project demand, SOP, and optimal policy supplied water in recent drought 
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For A5 project which is located in Zohreh system downstream (see Figure 1), the details of 

operation (water supplied) are presented by SOP and optimal rule-curves in Figures 5 and 6. 

Visual comparison of two policies' performances (SOP and optimal rule-curve with hedging) are 

illustrated in Figure 7. This figure graphically shows the superiority of the new routine through 

the smooth behavior, good correlation with demand and less severe deficits.  

Since this optimal operation policy is prescribed based on the whole 58-year historical 

records, trigger water levels are general and synchronized for all hydrological conditions 

experienced including successive droughts, particularly 9-year in the initial and 7-year recent 

drought in the last stages of the record. But if in a particular event another policy performs better 

(SOP in 1999-2000, Figures 5 and 6), it corresponds to the peculiar hydrologic attributes of that 

event. However, it is known that in the SOP, if insufficient water is available to satisfy the 

demands, the reservoir releases all the water available and becomes empty; if inflow is high, the 

reservoir will fill and spill its excess water. Becuse this policy does not provide a mechanism for 

decreasing release in the early stages or during indications of impending drought. 

Optimal rule-curve s coupling to hedging rules for Kheirabad, Kosar, and Chamshir reservoirs 

are shown in Figs. 8–10. These monthly trigger levels of reservoir are optimized for 

management during droughts. 
   

 
Figure 8. Optimal rule-curve‎s for Kheirabad 

 
Figure 9. Optimal rule-curve‎s for Kosar 
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Figure 10. Optimal rule-curve‎s for Chamshir 

The rule-curves structures illustrated in Figures 8-10 indicate that the implementation of 

Formulas 5 and 6 in the developed model algorithm as constraints is logical. As a result, the 

difference between two susequent coordinate points and the difference between the first and the 

last month of water year is kept bounded based on the considerations and operational views of 

the water resource managers.   

5. Conclusion  
In this paper, a drought management simulation-optimization model was introduced to derive 

the rule-curves and rationing factors for multi-purpose multi-reservoir systems. The system of 

reservoirs and demands is mathematically simulated using a flexible and general WEAP model. 

In the simulation model, all physical constraints of the case-study are systematically satisfied. In 

a higher level, a self-adaptive GA is used to optimize the reservoirs rule-curves and hedging 

factors with the objective function of modified shortage index (MSI). The model was applied to 

a real three-reservoir drought-stricken system. After the optimization, the system performance 

was compared to the results of the SOP. The rule-curve s derived from the historical 58-year 

period data systematically consider different climate conditions experienced by the system and 

would be able to manage similar conditions in the future. The proposed operating rules can 

mitigate the water shortage consequences by rationing current demands and saving water for 

future uses in drought periods. In terms of agriculture, public and hydropower supply of 

demands, with regard to the performance criteria, the model outperforms the SOP.  
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