Using the IHACRES model to investigate the impacts of changing climate on streamflow in a semi-arid basin in north-central Iran

Document Type: Research Paper


1 Department of Civil Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.


Understanding the variations of streamflow of rivers is an important prerequisite for designing hydraulic structures as well as managing surface water resources in basins. An overview of the impact of climate change on the streamflow in the Hablehroud River, the main river of a semi-arid basin in north-central Iran, is provided. Using the LARS-WG statistical downscaling model, the outputs of HadCM3 general circulation model under the IPCC SRES A1B, A2, and B1 emission scenarios were downscaled to a finer spatial scale and the daily precipitation and temperature time series over the period of 2011-2030 for the study area were obtained. Results showed that the study area would experience a decline in precipitation (8.2% on average). The IHACRES rainfall-runoff model was then calibrated in the study area. Based on the fit statistics in calibration and validation phases, the overall performance of the developed model was judged to be satisfactory. The calibrated hydrological model was driven by the downscaled rainfall and air temperature data to project the effect of changing climate on the outflow of the basin under study. Results showed that, with some exceptions in June, July and August, all emission scenarios predict a decrease in the long-term monthly average outflow of the Hablehroud Basin. The outflow reduction in winter, spring, summer, and autumn had an average value of 25.7, 14.3, 1.9, and 48.8%, respectively. It was also observed that if climate change would occur in the basin, monthly flows associated to each return period would decrease.


  1. Labat, D., Goddéris, Y., Probst, J.L., Guyot, J.L., 2004. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 27, 631–642. doi:10.1016/j.advwatres.2004.02.020
  2. Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Change 62, 189–216. doi:10.1023/B:CLIM.0000013685.99609.9e
  3. Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A. M., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Science of the Total Environment, 442, 405-419.
  4. Hadinia, H., Pirmoradian, N., Ashrafzadeh, A., 2016. Effect of changing climate on rice water requirement in Guilan, north of Iran. J. Water Clim. Chang. 1–14. doi:10.2166/wcc.2016.025
  6. Sa’adi, Z., Shahid, S., Chung, E.S., Ismail, T. bin, 2017. Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models. Atmos. Res. 197, 446–460. doi:10.1016/j.atmosres.2017.08.002
  7. Jain, S.K., Kumar, N., Ahmed, T., Kite, G.W., 1998. SLURP model and GIS for estimation of runoff in a part of Satluj catchment, India. Hydrol. Sci. J., 43(6), 875–884. doi:10.1080/02626669809492184
  8. Xevi, E., Christiaens, K., Espino, A., Sewnandan, W., Mallants, D., Sørensen, H., & Feyen, J. (1997). Calibration, validation and sensitivity analysis of the MIKE-SHE model using the Neuenkirchen catchment as case study. Water Resources Management, 11(3), 219-242.
  9. Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment Part I: Model development. JAWRA J. Am. Water Resour. Assoc. 34, 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x
  10. Jakeman, A.J., Littlewood, I.G., Whitehead, P.G., 1990. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J. Hydrol. 117, 275–300. doi:10.1016/0022-1694(90)90097-H
  11. Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99(D7), 14415–14428. doi: 10.1029/94JD00483
  12. Nash, L.L., Gleick, P.H., 1991. Sensitivity of streamflow in the Colorado Basin to climatic changes. J. Hydrol. 125, 221–241. doi: 10.1016/0022-1694(91)90030-L
  13. Esmaeelzadeh, S. R., Adib, A., & Alahdin, S. (2015). Long-term streamflow forecasts by Adaptive Neuro-Fuzzy Inference System using satellite images and K-fold cross-validation (Case study: Dez, Iran). KSCE Journal of Civil Engineering, 19(7), 2298-2306.
  14. Salehpoor, J., Ashrafzadeh, A., Moussavi, S. (2018). Water Resources Allocation Management in the Hablehroud Basin Using a Combination of the SWAT and WEAP Models. Iran Water Resources Research, 14(3), 239-253.
  15. Abbaspour, K.C., Faramarzi, M., Ghasemi, S.S., Yang, H., 2009. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 45, 1–16. doi:10.1029/2008WR007615
  16. Adib, A., Kalaee, M. M. K., Shoushtari, M. M., & Khalili, K. (2017). Using of gene expression programming and climatic data for forecasting flow discharge by considering trend, normality, and stationarity analysis. Arabian Journal of Geosciences, 10(9), 208.
  17. Zarghami, M., Abdi, A., Babaeian, I., Hassanzadeh, Y., Kanani, R., 2011. Impacts of climate change on runoffs in East Azerbaijan, Iran. Glob. Planet. Change 78, 137–146. doi:10.1016/j.gloplacha.2011.06.003
  18. Thompson, J.R., 2012. Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections. Hydrol. Res. 43, 507. doi:10.2166/nh.2012.105
  19. Faramarzi, M., Abbaspour, K.C., Vaghefib, S.A., Farzaneh, M.R., Zehnder, A.J.B., Srinivasan, R., Yang, H., 2013. Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 480, 85–101. doi:10.1016/j.jhydrol.2012.12.016
  20. Thompson, J.R., Laizé, C.L.R., Green, A.J., Acreman, M.C., Kingston, D.G., 2014. Climate change uncertainty in environmental flows for the Mekong River. Hydrol. Sci. J. 59, 935–954. doi:10.1080/02626667.2013.842074
  21. Adib, A., Mirsalari, S. B., & Ashrafi, S. M. (2018). Prediction of meteorological and hydrological phenomena by different climatic scenarios in the Karkheh watershed (south west of Iran). Scientia Iranica.
  22. Hawkins, T.W., 2015. Simulating the impacts of projected climate change on streamflow hydrology for the Chesapeake Bay Basin. Ann. Assoc. Am. Geogr. 105, 627–648. doi:10.1080/00045608.2015.1039108
  23. Xu, H., Luo, Y., 2015. Climate change and its impacts on river discharge in two climate regions in China. Hydrol. Earth Syst. Sci. 19, 4609–4618. doi:10.5194/hess-19-4609-2015
  24. El-Khoury, A., Seidou, O., Lapen, D.R.L., Que, Z., Mohammadian, M., Sunohara, M., Bahram, D., 2015. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J. Environ. Manage. 151, 76–86. doi:10.1016/j.jenvman.2014.12.012
  25. House, A.R., Thompson, J.R., Acreman, M.C., 2016. Projecting impacts of climate change on hydrological conditions and biotic responses in a chalk valley riparian wetland. J. Hydrol. 534, 178–192. doi:10.1016/j.jhydrol.2016.01.004
  26. Nasseri, M., Zahraie, B., Forouhar, L., 2017. A comparison between direct and indirect frameworks to evaluate impacts of climate change on streamflows: case study of Karkheh River basin in Iran. J. Water Clim. Chang. 8, 652–674. doi:10.2166/wcc.2017.043
  27. Hosseini, S.H., Ghorbani, M.A., Massahbavani A.R., 2015.Raifall-Runoff Modelling under the Climate Change Condition in Order to Project Future Streamflows of Sufichay Watershed. jwmr. 2015; 6 (11) :1-14 (in Persian).
  28. Lotfirad, M., Adib, A., & Haghighi, A. (2018). Estimation of daily runoff using of the semi-conceptual rainfall-runoff IHACRES model in the Navrood watershed (a watershed in the Gilan province). Iranian J. Ecohydrology, 5(2), 449-460.
  29. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263.
  30. Jakeman, A.J., Littlewood, I.G., Whitehead, P.G., 1990. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology 117 (1-4), 275-300.
  31. Dye, P.J., Croke, B.F.W., 2003. Evaluation of streamflow predictions by the IHACRES rainfall-runoff model in two South African catchments. Environ. Model. Softw. 18, 705–712. doi:10.1016/S1364-8152(03)00072-0
  32. Jakeman, A.J. and Hornberger, G.M., 1993. How Much Complexity Is Warranted in a Rainfall-Runoff Model?. Water Resources Research 29 (8), 2637-49.
  33. Post, D. A., & Jakeman, A. J. (1996). Relationships between catchment attributes and hydrological response characteristics in small Australian mountain ash catchments. Hydrological Processes, 10(6), 877-892.
  34. Evans, J.P., Jakeman, A.J., 1998. Development of a simple, catchment-scale, rainfall-evapotranspiration-runoff model. Environ. Model. Softw. 13, 385–393. doi:10.1016/S1364-8152(98)00043-7
  35. Croke, B.F.W., Jakeman, A.J., 2004. A catchment moisture deficit module for the IHACRES rainfall-runoff model. Environ. Model. Softw. 19, 1–5. Doi:10.1016/j.envsoft.2003.09.001
  36. Hansen, D.P., Ye, W., Jakeman, A.J., Cooke, R., Sharma, P., 1996. Analysis of the effect of rainfall and streamflow data quality and catchment dynamics on streamflow prediction using the rainfall-runoff model IHACRES. Environ. Softw. 11, 193–202. doi:10.1016/S0266-9838(96)00048-2
  37. Kim, H. S. (2015). Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD. Journal of Hydrology, 521, 543-555.
  38. Semenov, M.A., Barrow, E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Clim. Change 35, 397–414. doi:10.1023/A:1005342632279
  39. Moriasi, D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in basin simulations. Trans. ASABE 50, 885–900. doi:10.13031/2013.23153
  40. Gohari, A., Bozorgi, A., Madani, K., Elledge, J., Berndtsson, R., 2014. Adaptation of surface water supply to climate change in central Iran. J. Water Clim. Chang. 5, 391–407. doi:10.2166/wcc.2014.189
  41. Zamani, R., Akhond-Ali, A.M., Roozbahani, A., Fattahi, R., 2016. Risk assessment of agricultural water requirement based on a multi-model ensemble framework, southwest of Iran. Theor. Appl. Climatol. 1–13. doi:10.1007/s00704-016-1835-5.
  42. Zamani, R., Akhond-Ali, A. M., Ahmadianfar, I., & Elagib, N. A. (2017). Optimal reservoir operation under climate change based on a probabilistic approach. Journal of Hydrologic Engineering, 22(10), 05017019.