Urmia Lake desiccation and the signs of local climate changes

Document Type: Research Paper

Authors

1 Water Resources Division, Department of Civil Engineering, KN Toosi University of Technology

2 Department of Civil Engineering, K.N. Toosi University of Technology

3 Department of Civil Engineering, KN University of Technology, Tehran, Iran

4 Department of Civil Eng. KN Toosi University of Tech.

Abstract

The water crisis is one of the important issues in the Middle East countries. Many lakes are ‎drying up and/or facing critical situations, exerting tremendous impacts on the socio-economics ‎of their region. Lake Urmia, in northwestern Iran, currently is facing critical situations and is on ‎the brink of total ‎shrinkage and environmental disaster. This paper investigates the roots of crises ‎through trend ‎analysis of hydrologic variables and shows the impact of the lake desiccation on ‎altering the ‎local climate. The results indicate an increase in temperature, a decrease in lake ‎inflow, and ‎limited significant trends in precipitation. They also indicate that increasing ‎agricultural water ‎consumption is the main cause of the current crisis of Lake Urmia. Further ‎investigation reveals a ‎significant change in the local climate as a consequence of Urmia Lake ‎water shrinkage. This change occurs in the dominant wind direction where before its desiccation ‎the lake was acting as a cooling medium. This phenomenon vanished after the desiccation of the ‎lake causing a sharp increase in the temperature of the affected areas. ‎‎

Keywords


  1. Miller, H. L. (Eds.): IPCC (2007). Climate Change, The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK, 2007.
  2. Kendall, M. G. (1975). Rank Correlation methods. Griffin, London.
  3. Mann, H. B. (1945). Non-parametric tests against trend. Econometrica. 13:245–259
  4. Lins, H. F., & Slack, J. R. (1999). Stream flow trends in the United States. Geophysical research letters. 26:227- 230. Paper Number: 1998GL900291
  5. Brunetti, M., Colacino, M., Maugeri, M., & Nanni, T. (2001). Trends in the daily intensity of precipitation in Italy from 1951 to 1996. International Journal of Climatology. 21: 299–316. doi: 10.1002: joc.613
  6. Kampata, J. M., Parida, B. P., & Moalafhi, D. B. (2008). Trend analysis of rainfall in the headstreams of the Zambezi River Basin in Zambia. Physics and Chemistry of the Earth. 33: 621–625. doi: 10.1016/j.pce.2008.06.012
  7. Burn, D.H., & Elnur, M. A. H. (2002). Detection of hydrologic trends and variability. Journal of Hydrology. 255: 107- 122. Pii: S0022-1694(01)00514-5
  8. Birsan, M.V., Molnar, P., Burlando, P., & Pfaundler, M. (2005). Streamflow trends in Switzerland. Journal of Hydrology. 314: 312–329. doi: 10.1016/j.jhydrol.2005.06.008
  9. Hirsch, R. M., Slack J. R., & Smith, R. A. (1982). Techniques of Trend Analysis for Monthly Water Quality Data. Water Resources Research. Vol. 18(1): 107-121
  10. Lettenmaier, D. P., Wood, E. F., & Wallis, J. R. (1994). Hydro-Climatological trends in the continental United States. Journal of Climate. 7:586- 607
  11. Kahya, E., & Kalayci, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology. 289: 128–144. doi: 10.1016/j.jhydrol.2003.11.006
  12. Hamed, K. H., & Rao, A. R. (1998). A modified Mann- Kendall trend test for auto correlated data. Journal of Hydrology. 204: 182- 196. Pii: S0022-1694(97)00125-X
  13. Mondal, A., Kundu, S., Mukhopadhyay, A. (2012). Rainfall trend analysis by Mann-Kendall test: A case study of North-eastern part of Cuttack District, Orissa. International Journal of Geology, Earth and Environmental Sciences. 2(1): 70-78
  14. Tabari, H., Marofi, S., Aeini, A., Hosseinzadeh Talaee, P., & Mohammadi, K. (2011). Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology. 151: 128–136. doi: 10.1016/j.agrformet.2010.09.009
  15. Kousari, M. R., Dastorani, M. T., Niazi, Y., Soheili, E., Hayatzadeh, M., & Chezgi, J. (2014). Trend detection of drought in arid and semi-arid regions of Iran based on implementation of Reconnaissance Drought Index (RDI) and application of non-parametrical statistical method. Water Resour Manage. Online. doi: 10.1007/s11269-014-0558-6
  16. Wikipedia.org, List of drying lakes, 01/09/2014, https://en.wikipedia.org/wiki/List_of_drying_lakes
  17. McBean, E., & Motiee, H. (2008). Assessment of impact of climate change on water resources: a long-term analysis of the Great Lakes of North America. Hydrology and Earth System Sciences. 12: 239–255
  18. Zhao, G., Horman, G., Fohrer, N., Zhang, Z., & Zhai, J. (2010). Streamflow Trends and Climate variability Impacts in Poyang Lake Basin, China. Water Resour Manage. 24:689–706
  19. Henderson, S. E., & Lopez, M. A. (1989). Trend analysis of Lake Parker stage and relation to various hydrologic factors, 1950- 86, Lakeland, Florida. U.S. GEOLOGICAL SURVEY, Water-Resources Investigations Report 89-4037
  20. Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P., & Menard, P. (2006). Recent trends in Canadian lake ice cover. Hydrol. Process. 20: 781–801. doi: 10.1002/hyp.6131
  21. Yenilmez, F., Keskin, F., & Aksoy, A. (2011), Water quality trend analysis in Eymir Lake, Ankara. Physics and Chemistry of the Earth. 36: 135–140. doi: 10.1016/j.pce.2010.05.005
  22. Altunkaynak, A. (2007). Forecasting surface water level fluctuations of lake Van by artificial neural networks. Water Resour Manage. 21: 399–408. doi: 10.1007/s11269-006-9022-6
  23. Guldal, V., & Tongal, H. (2010). Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Egirdir Lake Level Forecasting. Water Resour Manage. 24: 105–128. doi: 10.1007/s11269-009-9439-9
  24. Imani, A., You, R. J.,& Kou, C. Y. (2014) Caspian Sea level prediction using satellite altimetry by artificial neural networks. Int. J. Environ. Sci. Technol, 11: 1035–1042
  25. Vaziri, M. (1997). Predicting Caspian Sea surface water level by ANN and ARIMA models. Journal of waterway, port, coastal and ocean engineering. 158-162.
  26. UNEP (2012) The dying of Iran’s lake Urmia and its environmental consequences. Tech. rep. United Nations Environment Programme (UNEP) Global Environmental Alert Service (GEAS).
  27. AghaKouchak, A., Norouzi, H., & Madani, et al. (2014). Aral Sea syndrome desiccates Lake Urmia: Call for action. Journal of Great Lakes Research. Retrieved from http://dx.doi.org/10.1016/j.jglr.2014.12.007
  28. Glantz, M. H., & Rubinstein, (1993). Tragedy in the Aral Sea basin, looking back to plan ahead? Global Environmental Change. vol. 3: 174–198
  29. Aladin, N. V., & Potts, W. T. W. (1992). Changes in the Aral Sea ecosystems during the period 1960-1990. Hydrobiologia. vol. 237: 67-79
  30. Salameh, E., & El-Naser, H. (1999). Does the actual drop in Dead Sea level reflect the development of water sources within its drainage basin? Acta hydrochimica et hydrobiologica, vol. 27: 5-11
  31. Radwan, A. Al-Weshah (2000). The water balance of the Dead Sea: an integrated approach. Hydrological Process. vol. 14: 145-154
  32. Helsel, D. R., & Hirsch, R. M. (1992). Statistical Methods in Water Resources. Elsevier Publishers, Amsterdam, Holland.
  33. Farokhnia. A., & Morid, S. (2012). Assessment of the Effects of Temperature and Precipitation Variations on the Trend of River Flows in Urmia Lake Watershed. Water and Wastewater. 3:86-97 (in Farsi)
  34. Nouri, H. (2014, February). Urmia Lake precipitation trend analysis using Mann-Kendall test. 32nd National and 1st International Geosciences Congress, February 16-19, Tehran (in Farsi)
  35. Eamen. L., & Dariane, A. B. (2014, June). Agricultural Development Role in Urmia Lake Crisis, Iran. UNESCO Chair in Technologies for Development: What is Essential? 4-6 June| EPFL, Lausanne, Switzerland. Retrieved from http://cooperation.epfl.ch/2014Tech4Dev/Sessions/6June