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Abstract 
In this paper, the axisymmetric flow toward a pumping well has been numerically solved by the 

cell-centered finite volume method. The numerical model is discretised over unstructured and 

triangular-shaped grid which allows simulating inhomogeneous and complex-shaped domains. 

Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) 

schemes are used to discretize the flux term. In this work, the diamond scheme as the MPFA 

method has been employed and the least square method is applied to express the full discrete 

form of the vertex-values of the hydraulic head. The scheme has been verified via the Theis 

solution, as a milestone in well hydraulics. The numerical results show the capability of the 

developed model in evaluating transient drawdown in the confined aquifers. The proposed 

numerical model leads to the stable and local conservative solutions contrary to the standard 

finite element methods. Also this numerical technique has the second order of accuracy. 
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1. Introduction  
Groundwater accounts for about 30 percent of the world's supply of fresh water. In arid and 

semi-arid regions this resource serves as an alternative to the surface reservoirs of water. These 

issues make well hydraulics an important aspect in hydrological and water science problems. 

The mathematical analysis of well pumping on head decline in confined aquifers first provided 

by Theis in 1935 [1]. The analytical solutions for other types of aquifers such as leaky and 

unconfined aquifer were obtained by Hantush and Jacoub [2] and Neuman [3-6], respectively. 

However, the analytical solutions are limited to the ideal cases. Thus, numerical methods have 

been developed to model the real and complicated circumstances. Despite the traditional 

numerical schemes such as the standard finite element method developed extensively to model 

the groundwater problems, it suffers from the numerical oscillations especially in 

inhomogeneous porous media [7-10]. In order to resolve the numerical instabilities and provide 
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mass conservative solution, the finite volume methods (FVMs) have been formulated to simulate 

the groundwater flow equation [10-15]. Since the unstructured grid is the most efficient and 

flexible mesh to model the complex geometries and sharp heterogeneities [16], this type of mesh 

is applied in this study. Due to non-orthogonality of the irregular grids, MPFA schemes are used 

to discretize the flux term [17,18]. In this work, the diamond scheme as the MPFA method has 

been employed on the unstructured triangular grids [19-23]. Moreover, the least square method 

is applied to express the full discrete form of the vertex-values of the hydraulic head. This 

procedure results in the cell-centered finite volume method (CC-FVM). It was demonstrated in 

[15, 21] that this scheme provides second-order accurate solutions. 

In [13], this discretization scheme was combined with the mechanics equation to simulate the 

Biot's model [24] in two-dimensional domain. It was illustrated that the proposed numerical 

method result in stable and local conservative solutions. In addition, it was shown that the 

unstructured grid makes the model well-suited for simulating heterogeneous domains and 

complicated geometries [13].  

The axisymmetric flow toward a pumping well has been numerically solved by the cell-

centered finite volume method. Since the computational cost of the axially symmetric model is 

less than the equivalent three dimensional one, this simplification has been assumed in the 

formulations. Indeed, in this study the effectiveness of the model in simulating flow in confined 

aquifer subjected to pumping has been investigated. 

2. Mathematical formulation  
The governing equation for fluid flow in a confined aquifer is:  

𝑆𝑠

𝜕ℎ

𝜕𝑡
+ div𝐯 = 𝑓 (1) 

 

where 𝑆𝑠 is the specific storage coefficient which can be defined as 𝜌𝑤𝑔(𝛼 + 𝑛𝛽), 𝐯 = 𝐊̅∇ℎ is 

the Darcy's velocity, ℎ denotes the hydraulic head and 𝐊̅ is the tensor form of the hydraulic 

conductivity. t is time, 𝜌𝑤 denotes the density of fluid, 𝑛 is the porosity and 𝛼 and 𝛽 are the 

compressibility of aquifer and fluid, respectively. Finally, 𝑓 is a sink /source term.  

The required boundary conditions can be written as follows: 

ℎ = ℎ𝐷       on    𝛤ℎ (2) 

𝐯. 𝐧 = 𝑞    on    𝛤𝑞 (3) 

where ℎ𝐷 and 𝑞 are the boundary values of the hydraulic head and flux, respectively. The unit 

normal vector 𝐧 is pointing outward from the boundaries which are defined as: 

𝛤ℎ ∪ 𝛤𝑞 = 𝜕Ω (4) 

𝛤ℎ ∩ 𝛤𝑞 = ∅ (5) 

3. Numerical model 
A detailed description of the numerical formulations is presented in this section. For this 

purpose at the first stage, the FVM method has been applied for discretizing the flow equation 

and then a diamond scheme has been implemented to approximate the flux term. As mentioned 

earlier the variation of the hydraulic properties in the angular direction has been neglected and 

the model simulates the planar domain. 

3.1.1 The CC-FVM 
To apply the FVM, integral of the flow equations is calculated over the generic control 

volume V𝑖: 
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∫ (𝑆𝑠

𝜕ℎ

𝜕𝑡
+ div𝐯) 𝑑V

Vi

= ∫ 𝑓𝑑V
V𝑖

 (6) 

where in the above equation 𝑑V is the volume element which is defined as 𝑟𝑑𝑟𝑑𝜃𝑑𝑧 in the 

cylindrical coordinates. For the axisymmetric case the above equation can be reduced to the 

double integral as follows: 

∫ 𝑟 (𝑆𝑠

𝜕ℎ

𝜕𝑡
+ div𝐯) 𝑑Ω

Ωi

= ∫ 𝑟𝑓𝑑Ω
Ω𝑖

 (7) 

where 𝑑Ω is the area element such that 𝑑Ω = 𝑑𝑟𝑑𝑧, Ωi  denotes the two dimensional control 

volume and 𝑟 and z are the radial and axial coordinates, respectively. By implementing theorem 

of Gauss–Green to Eq. (7), the integral form of the flow equation will read as: 

∫ 𝑟 (𝑆𝑠

𝜕ℎ

𝜕𝑡
) 𝑑Ω

Ωi

− ∫ 𝐧. 𝐊̅∇ℎ
𝜕Ωi

𝑟𝑑Γ = ∫ 𝑟𝑓𝑑Ω
Ωi

 (8) 

The symbols 𝜕Ωi denotes the control volume's boundary. With approximating hydraulic head 

and the source/sink term at the centroid of the control volumes, the discretized form of the flow 

equation is obtained as follows: 

𝑟̅𝑆𝑠

𝜕ℎ𝑖

𝜕𝑡
|Ωi| + ∑ 𝑟𝑒𝑉𝑖𝑗|Γ𝑖𝑗|

Γ𝑖𝑗𝜖𝜕Ωi

= 𝑟̅𝑓𝑖|Ωi| (9) 

in which ℎ𝑖 is cell-averaged value of the hydraulic head. Γ𝑖𝑗  is the internal edge between two 

adjoining cells (Ωi and Ωj) and the absolute value of Γ𝑖𝑗 (|Γ𝑖𝑗|) represents its length. 𝑉𝑖𝑗 denotes 

the flux across this edge and |Ωi| is used to present area of the control volume. 𝑟̅ and 𝑟𝑒 denote 

the radial distances from the cell center and the midpoint of the edge Γ𝑖𝑗. 𝑓𝑖 indicates the cell 

average of the sink/source term. 

The velocity term is discretized with the equation proposed by Coudière et al. [20]: 

𝑉𝑖𝑗 = −
1

|Γ𝑖𝑗|
∫ 𝐧. 𝐊̅∇ℎ

Γ𝑖𝑗

𝑑Γ   (10) 

In the next section this integral flux has been approximated by a multipoint flux scheme [13, 18-

20]. Fig. 1 depicts the different parameters introduced in the equations. 
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Figure 1. Symbols used in the numerical formulations 

3.1.2 Approximating flux integral 
As mentioned earlier, a diamond scheme as a multipoint flux approximation is applied to 

evaluate the flux at the interface of the cells. In this procedure, the gradient of hydraulic head is 

calculated with the values of head at the vertices and center of the cells [18-20, 22, 25]. Indeed, 

using only cell center values of hydraulic head result in inaccurate solution for the unstructured 

grids [18, 25]. The gradient of hydraulic head across the boundary Γ𝑖𝑗 is given by [13, 15, 19, 20, 

23]:  

𝝍𝑖𝑗 = (
ℎ𝑗 − ℎ𝑖

𝐷𝑖𝑗
− cot 𝜃

ℎ𝐽 − ℎ𝐼

|Γ𝑖𝑗|
) 𝐧ij +

ℎ𝐽 − ℎ𝐼

|Γ𝑖𝑗|
𝐭ij (11) 

In the above equation, 𝐧ij indicates the unit normal of Γ𝑖𝑗 and is assumed that pointing from i to j 

(Fig. 2), and 𝐭ij is the tangent vectors of the respective face. As illustrated in figure 2, ℎ𝑖 and ℎ𝐼 

are the head values at the centroid of cell 𝑖 and vertex 𝐼, and  ℎ𝑗 and ℎ𝐽 are the corresponding 

values at the center of the control volume 𝑗 and node  𝐽, respectively. As shown in Fig.2, the 

parameter 𝐷𝑖𝑗  is defined as 𝐷𝑖𝑗 = 𝑑𝑖𝑗 + 𝑑𝑗𝑖 , in which 𝑑𝑖𝑗  and 𝑑𝑗𝑖  are the length of the lines 

between points 𝑖 and 𝑗 and the cell face, respectively [13, 15, 19, 20, 23]. Other parameters in 

Eq.(11) are illustrated in Fig.(2). 

 

Figure 2. Parameters used in the multipoint flux stencil 
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Combining Eq. (10) and (11), yields the full discrete form of flux as [13, 19, 20]: 

𝑉𝑖𝑗 = −𝜿𝝍𝑖𝑗. 𝐧ij (12) 
In the above equation, the conductivity tensor 𝜿 is the full matrix which can be expressed as 

follows [13, 19, 20]: 

𝜿 =
1

|Γ𝑖𝑗|
∫ 𝐊̅

Γ𝑖𝑗

𝑑Γ = [
𝜅𝑛𝑛 𝜅𝑛𝑡

𝜅𝑡𝑛 𝜅𝑡𝑡
]  in (𝐧ij, 𝐭ij) (13) 

By substituting Eqs. (10) and (12) into Eq. (11), the numerical flux reads as [13, 19, 20, 23]: 

𝑉𝑖𝑗 = −𝜅𝑛𝑛

ℎ𝑗 − ℎ𝑖

𝐷𝑖𝑗
− (𝜅𝑛𝑡 − cot 𝜃𝜅𝑛𝑛)

ℎ𝐽 − ℎ𝐼

|Γ𝑖𝑗|
 (14) 

 

 

Finally by interpolating head values at vertices in terms of the cell center values, the FV 

discretization will be completed [18, 20]. Averaging procedure for computing the weight factors 

is the least squares algorithm [15, 19-22]. By applying this averaging procedure, ℎ𝐼 is calculated 

as follows: 

ℎ𝐼 = ∑ 𝑤𝑖ℎ𝑖

𝑁𝐼

𝑖=1

 (15) 

The above summation is done over the cells common to the point I, and the weighting function 

𝑤𝑖 is defined for any control volume sharing vertex 𝐼 as [13, 19, 20]: 

𝑤𝑖 =
1 + 𝛬𝑟(𝑟𝑖 − 𝑟𝐼) + 𝛬𝑧(𝑧𝑖 − 𝑧𝐼)

𝑁𝐼 + 𝛬𝑟𝑅𝑟 + 𝛬𝑧𝑅𝑧
 (16) 

where 𝑟𝑖 and 𝑟𝐼 are the radial distances of the cell center 𝑖 and vertex 𝐼, respectively. 𝑧𝑖 and  𝑧𝐼 

denote the vertical distances of 𝑖 and 𝐼 from the z-axis. Also the following equations are used to 

formulate other functions in Eq. (16) [13, 19, 20]: 

𝛬𝑟 =
𝐼𝑟𝑧𝑅𝑧 − 𝐼𝑧𝑧𝑅𝑟

𝐼𝑟𝑟𝐼𝑧𝑧 − 𝐼𝑟𝑧
2  (17) 

𝛬𝑧 =
𝐼𝑟𝑧𝑅𝑟 − 𝐼𝑟𝑟𝑅𝑧

𝐼𝑟𝑟𝐼𝑧𝑧 − 𝐼𝑟𝑧
2  (18) 

𝐼𝑟𝑟 = ∑(𝑟𝑖 − 𝑟𝐼)2

𝑁𝐼

𝑖=1

   (19) 

𝐼𝑧𝑧 = ∑(𝑧𝑖 − 𝑧𝐼)2

𝑁𝐼

𝑖=1

 (20) 

𝐼𝑟𝑧 = ∑(𝑟𝑖 − 𝑟𝐼)

𝑁𝐼

𝑖=1

(𝑧𝑖 − 𝑧𝐼)   (21) 

𝑅𝑟 = ∑(𝑟𝑖 − 𝑟𝐼)

𝑁𝐼

𝑖=1

      (22) 

𝑅𝑧 = ∑(𝑧𝑖 − 𝑧𝐼)

𝑁𝐼

𝑖=1

   (23) 
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By substituting Eqs. (15) and (16) into Eq.(14), the final discrete form of this equation can be 

obtained. The similar procedure has been performed for all faces of each control volume to 

complete discretization of Eq.(9). 

4 Numerical result 
To verify the proposed scheme, the Theis solution has been solved and the numerical results 

have been compared with the analytical solutions. The validation demonstrates the effectiveness 

of the numerical technique for modeling the radial flow toward wells in confined aquifers. 

Moreover, to construct the triangular grids, NETGEN algorithm has been implemented as the 

mesh generator tool [26] and all of the numerical codes have been written in MATLAB 2010 

software. 

The first analytical solution for the drawdown problem in the confined aquifer was derived by 

Theis (1935) [1]. To simplify the problem the following assumptions have been made in the 

Theis solution: 

1. The confined aquifer is considered as a homogeneous, isotropic porous media and has  

infinite horizontal extent.  

2. The piezometric surface is considered horizontal prior to pumping. 

3. The well is fully penetrated and the pumping rate is constant. 

4. The radial flow towards well is horizontal.  

5. The radius of the pumping well is very small. 

6. The layer has uniform extent and confined top and bottom.  

7. Water is released from the porous media as head declines [27, 28]. 

These conditions are illustrated in Fig. 3. With the above assumptions, the drawdown 𝑠′ is 

calculated as [27, 28]: 

𝑠′ =
𝑄

4𝜋𝑇
∫

𝑒−𝑦

𝑦

∞

𝑢

𝑑𝑦 (24) 

where 𝑄 is the pumping rate, 𝑇 denotes transmissivity, the parameter 𝑢 is defined as  
𝑟2𝑆

4𝑇𝑡
 and 𝑆 is 

the storage coefficient [27,28].  

 

Figure 3. Schematic of the Theis problem 

To solve the problem following values are considered for the confined aquifer: 
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Table 1. Hydraulic parameters of the porous medium 

Parameters Values 

Thickness of the aquifer 25 𝑚 

Horizontal extent 500 𝑚 

 Pumping rate 𝑄 = 0.2 𝑚3/𝑠𝑒𝑐 

Transmissivity 𝑇 = 6.37 × 10−2𝑚2/𝑠𝑒𝑐 

Storage coefficient 𝑆 = 8.49 × 10−4 

 

The computational mesh is shown in Fig.4. In Fig.5, the numerical and analytical solutions are 

compared. As illustrated in Fig. 5, numerical results closely correspond to the analytical 

solutions. 

 

Figure 4. Theis problem: Grid layout 

 
Figure 5. Theis problem: comparison between numerical and analytical solutions 

5. Conclusions 
This study presents a mass conservative method to model the axisymmetric groundwater 

flow toward a pumping well. Since the MPFA methods use head values in more than two cells 

in the unstructured grids, applying this scheme improves the accuracy of the result. 
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Furthermore, the diamond method has been implemented to construct the flux expression in 

terms of head values at the vertices and cell centers. Moreover, to interpolate the hydraulic 

values at the vertices, the least square method has been applied. Finally, to investigate the 

efficiency of the proposed numerical scheme, the model is verified against the Theis solution as 

a milestone in well hydraulics. The result illustrates that the model successfully simulates the 

transient drawdown in the confined aquifers. 
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