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Abstract 
In this paper, an efficient numerical model for solution of the two-dimensional unsteady dam-

break problem is described. The model solves the shallow water equations through 

Characteristic-Based Split (CBS) finite element method. The formulation of the model is based 

upon the fractional time step technique primarily used in the finite difference method for the 

incompressible Navier-Stokes equations. In addition to well-known advantages of the finite 

element discretization in introducing complex geometries and making accurate results near the 

boundaries, the CBS utilizes interesting advantages. These include the ability of the method to 

simulate both compressible and incompressible flows using the same formulation. Improved 

stability of the CBS algorithm along with its capability to simulate both sub- and super-critical 

flows are other main advantages of the method. These useful advantages of the algorithm 

introduce the CBS as a unique procedure to solve fluid dynamics problems under various 

conditions. Since dam-break problem has principally a high non-linear nature, the model is 

verified firstly by modeling one-dimensional problems of dam-break and bore formation 

problems. Furthermore, application of the model to a two-dimensional hypothetical dam-break 

problem shows the robustness and efficiency of the procedure. Despite the high non-linearity 

nature of the solved problems, the computational results, compared with the analytical solutions 

and reported results of other numerical models, indicate the favorable performance of the used 

procedure in modeling the dam-break problems. 
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1. Introduction  
The computation of unsteady flows is required for the prediction of flood waves in rivers, flows 

generated by failure of dams and flow conditions in the vicinity of hydraulic structures [1-3]. 

Numerical models have been introduced as suitable alternatives to other form of flow simulations 

such as experimental studies [4,5]. Indeed, numerical models have utilized as an essential predictive 

tool to assess the risks associated with the failure of the hydraulic structures [5,6]. In the recent 
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decades, one-dimensional numerical models have been extensively used to simulate the unsteady 

dam-break problem. Relatively accurate description of the dam-break problem in real situations 

needs to use two-dimensional models [7,8]. Accuracy of the dam-break simulation results from 

these models is adequate for engineering applications. Modeling of two-dimensional unsteady flow 

during breaking a dam is more complicated than one-dimensional one because of need for efficient 

solver routines and the inclusions of suitable boundary conditions. Complexity of these 

computations is mainly due to occurrence of both sub-critical and super-critical flows after breaking 

a dam. 

Shallow water equations are non-linear first-order hyperbolic partial differential equations. The 

hyperbolic nature of these equations creates remarkable difficulties in the numerical solutions. The 

solutions of this type of equations obtained by numerical procedures are often discontinuous 

regardless of whether the initial conditions are smooth or highly fluctuating [9]. Since the equations 

have the non-linear character, their analytical solutions are possible in very simplified one-

dimensional situations and therefore, these equations are to be solved numerically for practical 

problems. 

Numerical experiments, however, show that most of numerical procedures fail if high non-

linearity occurs in the flow field. For instance, it is well-known that simple and direct finite element 

forms usually fail for shallow water problems due to instability which results in sever oscillations of 

the solution [10]. Similar to making use of stabilizers in the finite difference context, stabilization 

procedures have been introduced into some finite element formulations permitting the use the 

original discretization schemes. The Characteristic-Based Split, hereafter also denoted as CBS, 

algorithm is one of the most suitable finite element based numerical techniques for shallow water 

equations that utilizes the stabilization mechanism. This method utilizes both advantages of 

characteristics method for hyperbolic partial differential equations and nodaly exact results of 

Galerkin weighted residual method for self-adjoint problems. 

The Characteristic-Based Split algorithm and its interesting advantages are presented in detail in 

many earlier studies [10-22]. Here, a brief summary on the algorithm is given. The CBS algorithm 

is based on the original Chorin split [23] and also has similarities with the projection method widely 

used in compressible flow modeling. Based upon the Chorin technique, the discretization of the 

equations in the time advancement consists of two or more steps. The numerical behavior of the 

equations is affected using this splitting technique and the simpler sub-problems are achieved [14]. 

The velocity correction step is the key point in the CBS algorithm. The CBS algorithm makes use of 

Galerkin method along the characteristics for advection-dominated problems with a velocity 

correction stage. Using Characteristic-Galerkin procedure, the velocities are computed in two steps. 

Firstly, an intermediate velocity field is computed after elimination of the pressure type terms from 

the momentum equations. The pressure is obtained in the next step by solving the continuity 

equation that utilizes the intermediate velocity field determined in the previous step. A Laplacian 

form of the continuity equation is used making the use of Galerkin space discretization optimal. In 

the final step, the computed pressure type term is used to modify the velocity field. Some 

remarkable advantages of the algorithm for modeling of shallow water problems can be summarized 

as follows. Firstly, the stability of the algorithm is on the basis of the current velocity rather than the 

wave celerity leading to more stability of the method. Secondly, the standard Galerkin procedure is 

applied along the characteristics because of the splitting of the pressure type terms. The use of 

Characteristic-based Galerkin discretization and splitting of the pressure type terms, have made the 

CBS algorithm a unified approach to deal with both compressible and incompressible fluid flows 

and sub-critical and super-critical flows in water engineering problems, as well [16,17].  

This paper presents the formulation of the Characteristic-Based Split finite element method for 
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the shallow water equations and its application to the simulation of the dam failure and bore 

formation. The Characteristic-Based Split finite element method has been never applied for dam 

break problem, especially for two-dimensional dam break.  

The rest of the paper is structured as follows. The shallow water equations are reviewed in 

the first section. This is followed by the finite element formulation making use of the 

Characteristic-Based Split method. Numerical examples including two one-dimensional 

examples of a bore formation and a dam-break problem and a two-dimensional dam-break 

problem are discussed in the fourth section. The paper concludes with the concluding remarks in 

the last section. 

 

2. Mathematical model 
Modeling flow hydrodynamics in shallow water bodies requires the prediction of water depth 

and depth integrated velocities in both x and y directions. In the derivation of shallow water 

equations from Navier-Stokes equations, some assumptions are necessary. The constant density 

of fluid, hydrostatic pressure distribution and making use of suitable free surface and boundary 

conditions are of the assumptions required for derivation of shallow water equations [6]. A 

schematic figure of the basic situation is shown in Figure 1.  

 

 
Figure 1. Schematic representation of the geometric setting. 

 

The conservative form of the shallow water equations in Cartesian coordinate system can be 

written as [16,17,22]: 
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where i, j =1, 2, the vector of U is Ui = hui, h is the water depth, ui is the i
th
 component of the 

averaged velocity over the depth; Fij is the i
th
 component of the j flux vector and the pressure 

type term p is given by: 

 22

2

1
Hhgp   (3) 

where H is the bathymetry elevation measured with respect to an arbitrary horizontal reference 

level. As shown in Figure 1, the water depth , h, is the water surface elevation with respect to the 

bathymetry and can be computed by h = H + . The variable  denotes the free surface elevation 

in regard to an arbitrary horizontal reference level. Finally, Si is the i
th
 component of a source 

vector, which can be expressed as: 
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The source terms in equation (4) are obtained by depth integration. The terms in this equation 

include the slope of bottom, the friction of bottom (Manning formula), the force of Coriolis and 

wind tractions i. Here ri = - f Uj where f denotes the Coriolis factor. 

3. Numerical model 
Using the concept of characteristics in temporal discretization of the shallow water equations, 

equations (1) and (2), arrived at the following equations [16]: 
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where (0  1, 2  1), (k =1, 2), the incremental variables p and Ui are the increments of the variables 

over a time step t and c ,the long waves celerity, is related to p with the depth of water by: 

gh
dh

dp
c 2

 (8) 

The method is completed by omitting Ui in the equation (5) by computing the divergence of equation (6) 

and replacing the obtained equations into equation (5). The following ‘self-adjoint’ type equation for the 

variable p is resulted in: 
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The ‘intermediate’ variable 
*

iU  computed explicitly. It denotes the first two terms in square brackets of 

equation (6). Calculation of the pressure type variable and the depth averaged velocity at the time (n + 

1)t, p
n+1

 and 
1n

iU , is conducted through the following steps: first, the intermediate variable 
*

iU  is 

computed, then the incremental pressure term p is calculated and at the final step, the intermediate 

velocities are corrected to attain the final velocity values, i.e. the complete momentum equation (6). The 

equations (6), (7) and (9) are performing the time discretization along the characteristics. A backward 

approximate integration gives the mentioned equations with extra convection stabilizers (the second 

bracket terms in right-hand side of equation (6)). These stabilization terms are consistent and extirpate the 

oscillations due to highly convective flows [10]. 
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3.1. Spatial discretization 
The spatial discretization of the equations obtained during the mentioned three steps is stated 

here. The first two terms on the right-hand side of equation (6) are discretized using the Gauss–

Green theorem and the standard Galerkin technique as follows: 
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in which  denotes the solution domain bounded by , 
l

uN and 
l

rN  represent the standard 

weighting function for U and S in node l and nk is the k
th
 component of the outward normal 

vector of the boundary of computational domain. The right-hand side of equation (10) is 

computed at time t
n
.  

Making use of the wave celerity definition in equation (8), the pressure type term is computed 

in terms of h. The standard Galerkin technique along with the Gauss–Green theorem are applied 

to equation (9) and the following discretized equation results: 
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in which 𝑐̂ is the averaged wave celerity over the time step t and (c
2
)

n
 is calculated at time t

n
. 

The velocity field correction as the final step, is written by considering equation (6). After 

making use of Galerkin procedure and some appropriate manipulations of the second-order term 

of equation (6), its spatial discretized form becomes as: 
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3.2. Boundary conditions 
Several boundary conditions of different types and their implementations have been 

described in many references, e.g. [17,21,25-30]. The implementation of the boundary 

conditions in the methodology of CBS is similar to that in other schemes. To implement the 

boundary conditions in the methodology of CBS, no special conditions are imposed for the 

computation of the 
*

iU . In equation (11) two last terms are the normal components of 

momentum which are computed of order t. The velocity components normal to the wall and 

open boundaries are defined by modifying step for these type of boundary conditions [16,17,21].   

3.3. Final discrete form and time integration 
The following steps are performed to arrive at the final form of numerical procedure [8]: 

i. Computation of the intermediate variable: The following spatial approximations are 

used in equation (10) for this step: 
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ii. Pressure computation step: The calculation of h is carried out using equation (17) and 

based on the following spatial discretization: 
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iii. Momentum correction step: The correction is established by equation (12) and the 

following approximations are used to equation (12) to carry out the correction of the 

momentum of flow: 
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The stability of computation of 
*

iU  is conditional. The simplified stability criterion in one-

dimensional state can be represented by uLtcrit  , where L is the smallest dimension of 

element and the values of  for consistent and lumped mass matrices are 1/3 and 1, respectively. 

The second and third steps of the method can be computed explicitly or semi-implicitly based on 

the chosen values for θ1 and θ2. For the fully explicit solution (θ2 = 0), the limit of stability finds 

equal to the explicit solutions and the procedure will be similar to the Taylor–Galerkin method 

[17,21]. When a semi-implicit solution is chosen (0.5 ≤ θ1 ≤ 1 and 0.5 ≤ θ2 ≤ 1), the limit of 

stability for the defined CBS procedure is characterized by the computation of intermediate 

momentum. 

4. Results and discussion 
The performance of the described algorithm on shallow water problems is evaluated by some 

numerical experiments. To achieve this aim, the following benchmark problems are solved in 

this paper. In these problems, the uniform meshes which include the triangular linear elements 

are used.  

In what follows, two set of problems are given. The first set deals with the flows in pseudo-

one-dimensional situation. The second set is two-dimensional one. These problems include the 

formation of shock waves by advancing the solution which are good tests for demonstraiting 

the capability of the scheme in modeling the severe natural hydraulic problems. 

4.1. One-dimensional problems 
As the first application of the described scheme, the classical Stoker test case is studied. In 

this case, the one-dimensional breaking of a dam over a wet bed is considered. Stoker’s exact 

solution [29] to the one-dimensional dam break is the superimposition of up-going rarefaction 

and down-going shock waves connected by a middle zone with a constant depth and a constant 

velocity (see, e.g., [31]). To execute this test, a dam lies at the middle of a rectangular flat 

channel and it is assumed that the dam fails instaneously. Because of discontinues initial 
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conditions and transition of flow from sub-critical to super-critical, it represents a severe test 

which has highlighted problems with a number of numerical schemes. The computational 

domain comprises of a 1001 m
2
. The water is initially at rest in the reservoir and tillage and 

the initial water depths are: 

 


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
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mxifm

mxifm
xh

501

502
0,  (16) 

 The gravity acceleration is assumed to be g = 9.8 m/sec
2
. The discretized domain involves 

1008 triangular linear elements having same sizes. Suddenly, the dam removed and the 

computation of flow over the whole domain started using t = 0.1 sec. 

The obtained results for water surface elevations and longitudinal velocities along the entire 

domain after collapsing the dam for 2.5 sec, 5 sec and 7.5 sec are shown in Figures 2 and 3 and 

they are compared favorably with analytical solution reported in [29]. As shown in these 

figures, the numerical results agree very well with those from analytical solutions. It is clear 

that the flow velocities and shock wave fronts advancing in downstream have been modeled 

accurately. Compared with the exact solution, overshoots occurs around the shock wave, 

together with an oscillation close to the rarefaction wave. The wave front clearly agree with the 

exact solution, and the main differences between the exact solution and the numerical results 

are localized just close to the discontinuities. 

 

Figure 2. Comparison of the model results with the analytical solution for dam break problem. 
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Figure 3. Longitudinal velocities along the entire domain compared with the analytical solution. 

 

The problem of bore formation and propagation along a rectangular flat channel is the 

second test studied here. The depth of 1 m and velocity of 1 m/sec along the entire channel are 

given as the initial conditions. Boundary conditions are imposed as the flow velocity of 1 m/sec 

in the upstream and a sinusoidal rising water elevation with period of 120 sec in the 

downstream boundary of the channel. After t = 30 sec the total water depth is imposed as 3 m at 

this boundary. This situation illustrates that a bore forms and then propagates in upstream 

direction. In order to solve the problem, a rectangular flat channel with the length of 200 m and 

width of 1 m is considered. The whole domain decomposes to 2008 triangular elements and 

the model is executed using time step t = 0.1 sec. The results obtained for water surface 

profiles and velocities during the bore propagation are shown in Figures 4 and 5. As seen, the 

wave fronts are well modeled and very small oscillations just occur close to the discontinuities. 

Comparison of the results shown in Figures 4 and 5 with those of reported in literature, e.g. 

[22], indicates that they have been employed coarser meshes to avoid the oscillations while the 

shocks were modeled milder. It is a common practice that the accurate modeling of a shock 

always produces some oscillations in its vicinity due to the omitting of higher order terms in the 

discretization process of the governing equations. In the other words, the steeper shock, the 

more oscillatory solution. However, the obtained results are well comparable with those of 

reported in [22]. The superiority of the CBS technique is its ability to model the shocks 

accurately with less oscillation. 
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Figure 4. Water profiles along the channel due to bore propagation. 

 

Figure 5. Flow velocities along the channel due to bore propagation. 

4.2. Two-dimensional problems 
A partial breaking of a dam over a wet bed which described in [9,30,32-34] is used to 

examine the shock capturing capability of the shallow water models. In this benchmark 

problem, the solution domain is a 200200 m
2
 flat rectangular domain with an asymmetric 

break. The whole domain is divided into 4080 triangular elements with the same sizes. The 

dam thickness is 5 m in the direction of flow and the asymmetrical breaking part of dam has 75 

m width. This breaking part is located in distance of 95 m from the right-hand side of the 

domain. Additional details of the domain are shown in Figure 6. The water depths inside the 

reservoir and in the tillage are 10 m and 5 m, respectively. By collapsing the dam, the water 
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moves toward the tillage. The flow field is computed numerically for 19 sec after the dam 

collapse. After breaking the dam, downstream traveling positive waves and upstream traveling 

negative waves are produced. The flow conditions were computed for t = 7.2 sec after the dam 

failure. At time t = 7.2 sec, the bore is well developed in the central portion of the tillage and 

the wave front has reached the left-hand bank of the domain. 

 

Figure 6. Geometry of the computational domain for partial dam-break. 

Since no analytical solution is available for this problem, the results are compared with the 

reported ones by another numerical scheme in [32]. The numerical results is close to the results 

of aforementioned research. The results are presented in Figures 7 and 8 and compared with the 

solutions reported in [32]. In Figure 7, water surface elevations, presented as perspective plot of 

water surface, are compared with the result reported in [32]. The other comparison is carried 

out for water elevation contours in Figure 8. As shown in these Figures, the obtained results are 

in good agreement with those of previous works. 

 
 

(a) (b) 

Figure 7. Water surface profiles for partial dam-break at t = 7.2 sec 

(a) Obtained by the model and (b) Reported in [32]. 
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(a) (b) 

Figure 8- Water elevation contours for partial dam-break at t = 7.2 sec 

(a) obtained by the model and (b) reported in [32]. 

5. Conclusions 
The CBS finite element model was presented for the solution of the two-dimensional dam-

break problem. The described CBS finite element model has some significant features. Its 

stability is based on the flow velocity instead of the celerity which is especially useful for 

modeling the long term problems. The improved stability of the CBS algorithm along with its 

capability in simulating both sub- and super-critical flows are considered as main advantages of 

the method. Due to the highly non-linear nature of the dam-break problem, the model was 

verified using both one-dimensional and two-dimensional hypothetical dam-breaking. In spite 

of the high non-linearity in these problems, the comparison of the computational results with 

the analytical solutions and reported results of other numerical models, indicated the favorable 

performance of the used procedure in modeling the dam-break problems. As an important 

result, the described model can safely be used as an efficient tool for modeling other 

complicated free surface hydraulic problems. Based on the results of the presented test cases 

which indicated the high performance of the CBS finite element method, the model can be used 

for natural dam-break problems in different situations. 
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