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Abstract 
One of the principal criteria for development of the boundary element method (BEM) in porous 

media is derivation of the required fundamental solutions in the boundary integral equations 

(BIE). Furthermore, setting up the governing BIEs based on the governing partial differential 

equations (PDE) is another challenge in solving a physical phenomenon using BEM. In this 

regard, the governing BIEs for unsaturated porous media have been developed using the 

available derived fundamental solutions. In this research, a perturbation type approximation is 

exploited for developing a system of BIEs for the quasi-static unsaturated porous media with 

moderate variations in its properties. Nevertheless, the fundamental solutions of the medium 

with constant properties are applied. The method produces two sets of equations with constant 

parameters instead of the original equations. Besides, the required boundary conditions have 

been formulated. This type of BIEs is essential to be used in the BEM for unsaturated porous 

media as the fundamental solutions for a medium with coordinates dependent properties is not 

available so far. The resulted introduced BIEs may be used directly in a BEM numerical model 

for an unsaturated porous media in one, two or three dimensional conditions. 
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1. Introduction  
Unsaturated soil, as a prevailing medium that surrounds most of the structures, has been of 

great interest during four past decades. Therefore, a considerable number of researches have 

been devoted to modeling its characteristics. The Biot's theory is often used as a mathematical 

model for the dynamic behavior in saturated soils. Its application to unsaturated soil problems is 
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possible under certain sets of conditions [1]. The Biot’s theory has been extended to nearly 

saturated porous media by Aifantis and Wilson and Aifantis for the quasi-static case, however, 

there are several other theories for partially saturated media or media with more phases [2]. 

BIE methods are among the most efficient numerical methods which depends strongly on 

finding the fundamental solutions of the governing homogenous PDEs, especially in the BEM. 

Therefore, many efforts have been devoted on finding the fundamental solutions for different 

cases of the problem. The first set of fundamental solutions for saturated media has been 

introduced by Cleary [3]. Then, several researches have been published on the fundamental 

solutions for different phenomena of saturated porous media such as deformation and heat 

conduction. In contrast, the fundamental solutions for unsaturated media have been published 

recently. Gatmiri and Jabbari derived the first static and quasi-static fundamental solutions of the 

problem in both Laplace and time domains [4], [5]. Later, Maghoul et al. presented coupled 

thermo-hydro-mechanical fundamental solutions for the same quasi-static loading condition of 

the unsaturated soil for two and three-dimensional time domains [6]. Ashayeri et al. introduced 

fundamental solutions for the dynamic problem in both 2D and 3D cases. A similar problem has 

been studied by Li and Schanz [7]. Ghorbani et al [8] studied the non-linear behavior of the solid 

skeleton of the soil in the analysis of multiphase unsaturated soils when subjected to both static 

and dynamic loading. Igumnov et al [9] considered wave propagation in fully and partially 

saturated porous media with examples of two-components and three-components. Igumnov et al 

[10] deduced the solution of a finite one-dimensional column with Neumann and Dirichlet 

boundary conditions based on the theory of mixture. 

More capabilities of the BEM may be realized when the required fundamental solutions to be 

available. Unfortunately, it is not always the case, instantly, for inhomogeneous soils, where the 

fundamental solutions have been derived only in a few very particular cases e.g. when the 

Poisson's ratio is equal to 0.25 [11]. In the absence of the required fundamental solution the 

bothering problems of the BEM such as domain integrals on the domain will arise. 

In unsaturated porous media, the state variables are the stress tensor, air and water pressures 

that change spatially, so a nonhomogeneous medium must be considered. In such a case, the 

boundary elements method seems to be ineffective. In detail, for the quasi-static case of the 

porous media the fundamental solutions in hand, which have been found for a homogeneous 

medium, are not efficient. Also, the assumptions that have been considered for finding the 

fundamental solutions for other media do not appear useful here e.g. when the Poisson's ratio is 

constant or when the variation of the state variables is a predefined pattern. Hence, in this paper, 

two boundary equation sets have been developed for the problem, when the parameters of the 

medium are varied slightly near a mean value. The first set concerned with a medium that has 

constant parameters and the second considers the effects of variation of the parameters. The toll 

was the appearance of a secondary set of equations which should be resolved. These sets of 

equations must be applied to make a BEM model. Additionally, more accuracy may be desired 

when large variations in the medium handled by employing the multi-region technique. 

In this paper the governing equations are briefly reviewed. Then changes in different 

parameters of the medium are found in terms of the changes of the state parameters and the 

governing equations are rewritten using this perturbed type of parameters. Then the integral 

equations have been developed and the boundary conditions are revised for the effects of the 

changes in state parameters. Finally, two sets of boundary integral equations have been 

constituted up which employ the fundamental solutions of the homogeneous medium. 
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2. Governing Equations 
The effective stress of the matrix of a porous medium may be written in terms of the 

displacements and pressures of fluid. For an elastic isotropic medium, the constitutive equations 

are [12]:  

     , , , a a w

ij ij ij k k i j j i ij sP u u u D P P           (1) 

Where   and   are the Lame’s coefficients for the skeleton, 
aP  and 

wP   are the gas (air) and the 

liquid (water) phase pressures, respectively, and sD  is the isotropic Biot’s coefficient for the 

fluid phase [12]. For a nonlinear elastic material, the equations may be linearized by the 

incremental form as [4]: 

   wa

sijklijkl

a

ijij dPdPDdDPd  
 

(2) 

The parameters in eq. (1) are functions of the state variables, but in the incremental form (eq. 

(2)) they are functions of the spatial coordinates. 

The momentum balance equation for the medium with the constitutive equation (2) and ignoring 

accelerations (to model the quasi-static case) of distinct phases could be written as [4]: 

   , , 1 0a w

j i i j ij s ij sdu du D dP D dP           (3) 

The mass of medium does not play any role in the incremental equation because it does not 

change, besides, the acceleration has been dropped. Furthermore, we can replace the saturation 

ratio for sD to find a simpler equation [13]. 

The saturation ratio, like every other parameter of the medium, is governed by the state 

variables. But we use a simple one which only needs for the suction [14] (a complete form could 

be seen in [9]): 

 wa PPLogSr  
 

(4) 

In this equation,    stands for the saturation ratio,   and   are constants. 

For investigation of the mass balance of distinct phases a moving control volume attached to the 

solid skeleton has been considered that ensures the mass balance of the solid phase, but balance 

of other phases should be certified. Assumption of the incompressibility of the liquid phases let 

replacing the balance of volume equations for the balance of masses: 

   01 , 


 a

iiqSrn
t  

(5) 

  0, 


 w

iiqnSr
t  

(6) 

Where 


iq  denotes the fluid volume fluxes       aor w  . It should be noted that the solution of 

air in the water has been ignored here, which may restrict application of these equations. 

However, in the case of constant ratio of dissolved air, they could be said by getting the mixture 

of water and dissolved air as the liquid phase. Equation (4) is needed in the incremental form 

which reveals the increment of the saturation ratio in terms of the increments of the state 

variables: 

 
)ˆˆ( wa

wa

PP

dPdP
dSr




 

 

(7) 

Where ˆ aP and ˆ wP  stand for the pressures of air and water in the last step, respectively. 

Darcy’s law has been exploited to evaluate the fluxes and then the continuity equation for gas 
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and liquid phases could be written as [4]:  

  
  

  
    

         ̇    
  ̂

  ̂   ̂  
   ̇    ̇      (8) 

  
  

  
    

         ̇    
  ̂

  ̂   ̂  
   ̇    ̇      (9) 

 
Where the dot stands for a temporal derivation. Equations (3), (8) and (9) form the governing 

equations of the problem. 

The Laplace transform is a perfect and usual tool for solving such a problem [12], [4], [3]. The 

following equations are achieved after applying the Laplace transform on the governing 

equations and assuming the parameters of the medium to be constants: 

0
~~~~

,14,13,12,11  w

i

a

ijjiijj PdcPdcudcudc
 

(10) 

0
~~~~

24,2322,21  wa

ii

a

ii PdcPdcPdcudc
 

(11) 

0
~

3
~~~

,3332,31  ww

ii

a

ii PdcPdcPdcudc
 

(12) 

In which the tiled mark (~) stands for the Laplace domain variables. In addition, for an 

incremental model, the initial conditions are assumed to be zero. The ijc coefficients are: 

  11c  
12c  
 Src  113  
Src 14  
 Srsc  121  

)ˆˆ(

ˆ
34322422 wa PP

ns
cccc








 

23

a

a

K
c


   

sSrc 31  

33

w

w

K
c


   

 

(13) 

 
The spatial variations of the state variables cause the parameters of the media to experience some 

spatial variations. Nevertheless, only the fundamental solutions are developed for constant 

parameters and are not applicable directly here. For using these fundamental solutions, it has 

been assumed that the state variables change slightly in the domain: 

   
 x

PP

x

ijc

ij

c

ij










)0(

0

)0(
 

(14) 

   
 x

P

P

P

xP
ac

a

c

a


)0(

0

)0(  

(15) 
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   
 x

P

P

P

xP
wc

w

c

w


)0(

0

)0(  

(16) 

In these equations   is a constant in some trivial size and    ; , ,ijx a w    are functions 

of the coordinates which show the distribution of the variables. These functions are of order one 

(   1O ) and cannot violate the assumption of slight changes in the state variables. The effective 

stress field is shown by  x  and the pressure fields of fluids are denoted by  aP x   and 

 wP x   for air and water, respectively. In equations (14) to (16) the fields of the state 

parameters have been revealed in terms of their value in the origin and the ratio of their variation 

to the value of the suction at the origin. The origin should be chosen properly to satisfy these 

equations and the domain could be divided to distinct regions, if necessary. 

The suction pressure could be considered as a function of the saturation ratio [14] and its value 

for some types of soils could be very large. Therefore, the relative changes of the suction could 

be small (see eq. (7)). Additionally, the resistance to the air flow is very small that the air 

pressure could be assumed equal to the atmosphere pressure at all points of the system or, at 

least, vary slightly [13]. Consequently, equations (15) and (16) could be claimed. The ratio of 

the variations of the effective stress and the suction pressure has been assumed small, so, 

equation (14) could be written. 

The variations in the parameters affect the solution which could be assessed using multi variable 

Taylor's series. Here, only the first orders have been considered and the results are: 

           

)(1)(0

))0(/())0(/())0(/(
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)0(

0
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)0(

0
,

)0(
,

)0(
,

)0(
,
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du

P
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P

P

P

P

P
xdu

P

xP

P
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P

x
xdu
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i

Pca

i

c
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i

c

w

c

a

c
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w
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a

c
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i
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
















































 








 



 

(17) 

     
)(1)(0

)0(
,

)0(
,

)0(
, xdPxdP

P

xP

P

xP

P

x
xdP aa

c

w

c

a

c

ija 









 

 

(18) 

     
)(1)(0

)0(
,

)0(
,

)0(
, xdPxdP

P

xP

P

xP

P

x
xdP ww

c

w

c

a

c

ijw 

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





 

 

(19) 

 
There is a perturbation type expansion, which approximates the solutions of the equations as a 

combination of solutions for the medium with constant parameters including a small 

perturbation. This result could be a premium assumption in other perturbation method equations 

such as in [15] and [16]. 

In appendix A, it has been shown that all other parameters could be written in the form of 

equation (20). Namely, for a typical parameter F:  

     
 )(1)0(

)0(
,

)0(
,

)0(
, xF

P

xP

P

xP

P

x
xF Fc

w

c

a

c

ij











 

 

(20) 



Boundary Integral Equations for Quasi-Static Un … 

 

 
AUTUMN 2018, Vol 4, No 2, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

47 

Where  0F  is the value of the typical parameter F in the origin and    is a normalized 

function of coordinates to account the spatial changes of factor F.  

Using the coordinate dependent parameters in the governing equations, computing the 

derivatives and then ignoring the second and higher orders of   lead to a new set of equations 

based on   and the theta functions. These equations could be separated into two sets, one 

consists of the terms without  (or with
0  ) and the other has the terms with   (or with

1  ) 

named zero and first order equations, respectively. The zero order equations are related to an 

imagined medium constant parameters which could be found at the origin and the other set 

reflects the effects of derivatives of the parameters when   has not been vanished. They are as 

follow: 

The zero order equations: 

            00
~

00
~

010~00~00 ,,,,  i

w

i

a

jjiijj PdSrPdSrudud 
 

(21) 

  
 
 

  00
~

0
~

0

0
0~010

~
)0( ,,  wa

ciiii
aa PdPd

P

n
sudSrsPdK


 

(22) 

 
 
 

  00
~

0
~

0

0
0~00

~
)0( ,,  wa

ciiii
ww PdPd

P

n
sudsSrPdK


 

(23) 

In which 
cP  stands for the suction pressure 

a wP P  and  0cP  is its value in the origin and 

both are in the earlier time step. 

The first order equations: 

            ii

w

i

a

jjiijj FPdSrPdSrudud
~

1
~

01
~

011~01~00 ,,,,  
 

(24) 
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~
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~
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~
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0
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~
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(25) 
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 
 
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n
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~
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~
1

~

0
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~
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

 

(26) 

In which the right-hand side values are: 
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(29) 

Where the values that denoted with (0) (such as     ) have been measured at the origin and at 

the earlier step. In addition, the zero order solution values (for example     ) are known values 

when the first order equations are going to be solved. The computational procedure has been 

illustrated in Fig. 1. 



E. Jabbari, M. Behnia 

 

 
AUTUMN 2018, Vol 4, No 2, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                  

48 

 
Figure 1: The Flowchart of the computational algorithm. 

 

3. Boundary conditions 
The boundary conditions are necessary for a set of differential equations to be solved. The 

governing differential equations system has been replaced with two new sets of differential 

equations so two sets of boundary conditions are needed. Here, the boundary conditions have 

been restricted to the Dirichlet and the Neumann types. Though, the extension to the mixed type 

is easy.  

The zero order equations should satisfy the Dirichlet type boundary conditions of the 

problem. Consequently, the first order equations need to satisfy the homogeneous version of this 

type of boundary conditions.  

For the Neumann type boundary conditions, especially when some parameters of the medium 

are needed (for instance, when the boundary condition has stipulated a non-zero value for the 
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discharge) the local value of parameters are needed. Once more, it has been assumed that the 

zero order equations which emulate the response of a homogeneous medium, should meet the 

boundary conditions when the parameters found from such a medium. Thus, the first order 

equations need a new set of boundary conditions to omit the error caused by the boundary 

conditions of the zero order equations. It causes a new set of boundary conditions that has been 

developed here. The following boundary condition may be assumed: 

1 on w wdq q   (30) 

which may be written as: 

 
   1,

0
1 0 1  on w

w w w

i wK i
w

K
dP dP n dq 


      (31) 

 
 , 1

0
0 0  on 

w w

i i w w

w

K
dP n dq dq


     (32) 

, , 11 0  on w

w w

i i iK
dP n dP    (33) 

Where the first boundary condition (eq. (32)) has been satisfied by zero order equations and the 

last one (eq. (33)) should be satisfied by the first order equations. This new type of boundary 

conditions, together with the first order equations could be solved now. 

4. Boundary Integral Equations 
A set of boundary integral form of the governing equations is crucial for implementing the 

BEM. After finding the weak form of the equations in the weighted residual method, two distinct 

strategies are available to achieve a set of boundary integral equations. Some methods have been 

found by taking the weight functions as fundamental solutions of the governing equations [17], 

[18]. This procedure is named the convolution method [19]. The other strategy uses the 

fundamental solutions of the adjoint operator of the main problem. Such a strategy which could 

be seen in [20] and [6] is known as the correlation method [19]. Then the desired boundary 

integral equations may be found by choosing the collocation points on the boundaries. 

Later, two sets of equations were derived which lead to various parts of the solution as they 

have been defined in (17) to (19). These equations are stipulated in (21) to (23) and (24) to (26) 

but, it could be seen that the equations are similar, but the boundary conditions are different. 

Therefore, a set of equation should be investigated, and a set of matrices will be needed for both 

equation sets. Although, the right-hand side of the equations need to be prepared distinctly for 

each set of equations. 

The details of the conversion of the set of differential equations could be found in [12], where 

a set of dynamic type of the problem has been converted to a set of convolution type boundary 

integral equations. After dropping the acceleration terms of the equations and changing some 

constants with their counterpart in the current problem we have [12] : 
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(34) 

where: 
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          j

wa

ijjikkiji nPSrPSruuuT 






 
~̂

0
~̂

01~̂~̂0~̂0
~̂

,,,   (35) 

  j

a

j

aa nPKQ ,

~̂
0

~̂
  (36) 

  j

w

j

ww nPKQ ,

~̂
0

~̂
  (37) 

The right-hand side domain integral is equal to zero for zero order equations, but it should be 

found for first order equations where 
F

~
could be found in equations (27) to (29). 

To have a time domain reciprocal integral, an inverse Laplace transform should be 

implemented. So, all products change to the convolution products: 

∫(     ̂̇   ̂̇    ̃ )

 

   ∫( ̂           ̂ )

 

  

 ∫( ̂           ̂ )

 

   

 

 ∫( ̂̇     )

 

   ∫      ̂       ̂  

 

   ∫(     ̂   ̂     )

 

   (38) 

 ∫( ̇   ̂      ̂      ̂ )

 

    

To have a boundary integral equation some domain integrals should be omitted except for the 

right-hand side domain integral. So, it is needed to 0 aw dd   which removes the bothering 

domain integrals.  

Now the case    tHxbi ˆ  and 0ˆˆ  wa   will be considered in which  H t  stands for 

the Heaviside step function and  x  is the Dirac Delta function. The fundamental solutions 

and related traction and fluxes are specified with a hat symbol. These replacements change (22) 

to: 

 

∫(     ̂̇   ̂̇    ̃ )

 

   ∫( ̂           ̂ )

 

  

 ∫( ̂           ̂ )

 

   (39) 

 ∫( ̇   ̂      ̂      ̂ )

 

       

 

Same procedure for    txa  ˆ  and then    txw  ˆ  will results: 

∫(     ̂̇   ̂̇    ̃ )

 

   ∫( ̂           ̂ )

 

  

 ∫( ̂           ̂ )

 

   (40) 

 ∫( ̇   ̂      ̂      ̂ )
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∫(     ̂̇   ̂̇    ̃ )

 

   ∫( ̂           ̂ )

 

  

 ∫( ̂           ̂ )

 

   (41) 

 ∫( ̇   ̂      ̂      ̂ )

 

       

Now equations (36), (37) and (38) form a set of boundary integral equations. Having 

fundamental solutions in hand, a standard time domain BEM procedure could be started here for

idu , 
adP  and 

wdP to be found on the boundaries and then on the domain points. This 

procedure should be done for both zero and first order equations. Besides, after implementing 

the boundary conditions, the right-hand side of the first order equations is involved with the first 

and second order partial derivatives of the zero order solutions on the domain. It could be a 

weighty extra step, but it might be removed by calculation of enough data in zeroth order step 

and using the interpolation functions and derivations according to techniques that have been 

used in meshless methods [21]. 

The other choice to have a reciprocity type of boundary integral equations is a correlation 

type boundary integral equation which could be found in the dynamic version of the problem in 

hand [8]. After omitting the acceleration terms and converting the equal parameters name, it 

leads to: 








 







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





 






 









dPFPFuF

dQPdQdPdQPdQdPdudTuTd

w

w

a

aii

wwwwaaaa

iiii

~̂~̂~̂~

~̂~~~̂~̂~~~̂~~̂~̂~

 
(42) 

This equation could be transformed to a boundary integral equation in which   iu , 
a

P and 
w

P  

are the fundamental solutions of the adjoint operator of which leads to the governing equations. 

The tractions induced by the fundamental solutions could be found as: 

          j

wa

ijjikkiji nPSrPSruuuT 





 

~̂
0

~̂
01~̂~̂0~̂0

~̂
,,,   (43) 

  j

a

j

aa nPKQ ,

~̂
0

~̂
  (44) 

  j

w

j

ww nPKQ ,

~̂
0

~̂
  (45) 

These yield to the following boundary integral equations: 

 

∫      ̂̇   ̂̇    ̃  

 

   ∫  ̂           ̂  

 

  

 ∫  ̂           ̂  

 

   (46) 

 ∫     ̂      ̂      ̂  
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∫      ̂̇   ̂̇    ̃  

 

   ∫  ̂           ̂  

 

  

 ∫  ̂           ̂  

 

   (47) 

 ∫     ̂      ̂      ̂  

 

       

∫      ̂̇   ̂̇    ̃  

 

   ∫  ̂           ̂  

 

  

 ∫  ̂           ̂  

 

   (48) 

 ∫     ̂      ̂      ̂  

 

       

 

Obviously, the right-hand side of equation (42) is equal to zero for the zero-order solution, 

but like the convolution type integrals for the first order equations, they should be calculated 

when the zero-order solution has been found.   

5. Numerical Example 
In order to show the effects of the introduced body force, a 3D model has been defined whit 

7×11×7 m with the data found from a real clay sample. The medium has been consolidated 

under its weight for a long time, so the initial conditions could be found using the properties of 

the soil including the special gravity and saturation ratio which varies from 50% in the surface to 

64% in the depth of 7 m. A 10KN point load has been applied to the semi-infinite model and the 

zero order equations has been solved for a time step equal to 8640 seconds (0.1 day). Then the 

distribution of the characteristic parameters of the medium and finally the extra body force has 

been found and demonstrated. It is important to note that a small part of the medium needs extra 

attention for the first order solution which saves the main advantage of the boundary elements 

method to solve the problems in infinite and semi-infinite regions. 



Boundary Integral Equations for Quasi-Static Un … 

 

 
AUTUMN 2018, Vol 4, No 2, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

53 

 
Figure 2: The body force distribution under 10 KN point load after 8640 seconds. 

 

6. Conclusion 
The unsaturated porous media experience an inhomogeneous condition during loading and 

deformation. Therefore, the complex and problem dependent changes in the parameters of the 

media make it impossible to derive the required fundamental solutions for the BIEs to be 

constituted. In this regard, a new formulation has been introduced for the medium that 

experiences a slight change in the parameters using the fundamental solutions of a 

homogeneous porous medium. It has been shown that the variation in the parameters of the 

medium could be found in terms of the variation of the state parameters. In addition, the 

considered variations are of the same order of variations of the state parameters. Then, a first 

order perturbation expansion has been employed for converting the set of equations with 

coordinates’ dependent parameters to two sets of equations with constant parameters. This 

procedure requires the fundamental solutions of the problem to be derived while the parameters 

are constant, which consequently necessitates extra efforts, including two times of the standard 

BEM procedure, assessment of the second order derivatives of the solutions of the zero order 

equations and some domain integrals. Therefore, using the introduced BIEs and fundamental 

solutions for the unsaturated porous media, one can prepare the BEM numerical model, verify 

and compare the results with other numerical methods. 

Nomenclature: 
x   : position vector 

ijσ
 

: the stress tensor 

iu
 : displacement in direction i 

λ   : Lame’s constant for the skeleton 
μ   : Lame’s constant for the skeleton 

aP   : gas (air) phase pressure 
wP   : liquid (water) phase pressure 
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sD   : the isotropic Biot’s coefficient for the fluid phase 

ijklD
 

: the elasticity coefficients 

Sr   : saturation ratio 

α   : constant in saturation ratio 

β   : constant in saturation ratio 
K

 
: coefficients of permeability for air and water 

K   : Bulk modulus for the skeleton 

E   : Young modulus for the skeleton 
γ   : specific weight 

n   : porosity of soil 

jn
 

: the normal vector 

 x  : the Dirac delta function 

 H t   : the Heaviside step function 

s   : the Laplace's transformation parameter 

  : symbol for small values 

 x  : distribution function for parameter α 

iT
~̂

 
: traction induced by the fundamental solutions in the Laplace's transformation space 

Q
~̂

 
: 

flux of phase α, induced by the fundamental solutions in the Laplace's 

transformation space 

ijc   : intermediate coefficients 



iq
 

: the fluid volume fluxes for air and water 
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Appendix A 
It has been claimed that any variation in the parameters of the medium could be found in 

terms of variations of the state parameters. In this appendix it has been explained for different 

parameters. A dimensionless type of the state parameters could be defined: 

 
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 (A-4) 

The state surface for the void ratio is [22]:  
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 (A-5) 

Where: 
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(A-6) 

In which a , b , m ,   bK   and atmP   are materials constants. Using (A-1) to (A-3) in (A-6): 
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 (A-7) 

Finally, using Taylor's expansion and dropping the infinitesimal terms, then replacing the result 

in (A-5): 
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(A-9) 

The relationship between e and n (porosity) results in a similar equation for n:  

      xnxn n 10
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(A-11) 

The water retention curve could be used to derive a similar equation for the saturation ratio: 

      xSrxSr Sr 10
 

(A-12) 

 
 
 0Sr

x
x c

Sr


 

 

(A-13) 

Where  has been used to express the saturation ratio in terms of suction.  

The air and water permeability could be explained in the same form: 

      xKxK
aKaa  10

 
(A-14) 

   
 

 
 

 
 
















01

0

0

01

Sr

Sr
x

e

e
xEx SrBkKa



 

(A-15) 
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(A-17) 

The constants have been defined later in the paper. 

The tangential elastic module could be evaluated using the Kondner's hyperbolic law for 

unsaturated soils [22]:  
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(A-23) 

The bulk module could be found using the Kondner's hyperbolic law and the state surface which 

has been stipulated previously [22]: 
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(A-24) 

Using the spatial assessment for B  and 
cP   and omitting the terms that includes second and 

higher orders of   leads to: 

      xKxK K 10  (A-25) 
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Finally using the known relations to convert the bulk and the elastic moduli to the Lame's 

coefficients leads to:  

      0  1x x     (A-27) 
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      0  1x x     (A-29) 

 
            

    
2

3 0  0 9 0  0  

9 0 0

tt E t K

t

K E K x E x
x

K E


 







 (A-30) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
© 2018 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed 

under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0 

license) (http://creativecommons.org/licenses/by/4.0/). 
 




