Experimental investigation of bed evolution resulting from dam break

Document Type : Research Paper

Authors

1 Department of Civil Engineering, Guilan University, Rasht, Iran

2 Department of Watershed Management Engineering, Faculty of Natural Resources, Sari Agricultural Science and Natural Resources University, Sari, Iran

3 School of the Built Environment, Heriot-Watt University, Edinburgh, UK

4 Department of Geography, Texas State University, San Marcos, Texas, USA

Abstract

This study examines the relations of structures and shapes of streambed evolution after dam break floods. A flume was used to simulate dam-break floods with variations of initial upstream water levels and variance, from uniform to graded, of the bed sediments. Detailed measurements of the evolution and composition were made during these experiments. The data indicate that intense scour occurred immediately downstream of the “dam break” in both uniform and graded sediments. The resulting bed surfaces of graded sediments showed coarse-fine-coarse structures in the areas with the lowest scour and highest deposition and various type of cluster (i.e. line and heap). This pattern was not observed in beds of uniform sediment. The scour hole changes from circular to oval-shaped in both uniform and graded sediments with increasing bed slopes.
Keywords: Dam break, Experimental, Bed-surface composition, Graded and uniform sediment, Scour.

Keywords


  1. You L., Li C., Min X., Xiaolei, T. (2012). Review of Dam-break Research of Earth-rock Dam Combining with Dam Safety Management. Procedia Engineering, 28:382-388.
  2. ICOLD Bulletin 111, Dam-break flood analysis, 1998.
  3. Capart H., and Young D.L. (1998). Formation of a jump by the dam-break wave over a granular bed. J. Fluid. Mech, 372, 165–187. doi:10.1017/S0022112098002250.
  4. Goutiere L., Soares-Frazão S., and Zec, Y. (2011). Dam-break flow on mobile bed in abruptly widening channel: Experimental data. J. Hydraul. Res, 49(3), 367–371. doi:10.1080/00221686.2010.548969.
  5. Cao, Z., Pender, G., Wallis, S., Carling, P. (2014). Computational Dam-Break Hydraulics over Erodible Sediment Bed. J. Hydraul. Eng. 130:689-703.,
  6. Pritchard, D., and Hogg, A. (2002). On sediment transport under dam break flow. J. Fluid Mech., 473, 265-274.
  7. Stoker, J. J. (1957). Water waves, Wiley-Interscience, New York.
  8. Leal, J. G. A. B., Ferreira, R. M. L., & Cardoso, A. H. (2010a). Geomorphic dam-break flows. Part I: Conceptual model. Proceedings of the Institution of Civil Engineers Water Management, 163(WM6), 297–304. doi:10.1680/wama.2010.163.6.297
  9. Leal, J. G. A. B., Ferreira, R. M. L., & Cardoso, A. H. (2010b). Geomorphic dam-break flows. Part II: Numerical simulation. Proceedings of the Institution of Civil Engineers – Water Management, 163(WM6), 305–313. doi:10.1680/wama.2010.163.6.305
  10. Li, J., Cao, Z., Pender, G., & Liu, Q. (2013). A double layer-averaged model for dam-break flows over mobile bed. Journal of Hydraulic Research, 51(5), 518–534. doi:10.1080/00221686.2013.812047
  11. Razavitoosi, S. L., Ayyoubzadeh, S. A., & Valizadeh, A. (2014). Two-phase SPH modelling of waves caused by dam break over a movable bed. International Journal of Sediment Research, 29(3), 344–356. doi:10.1016/S1001-6279(14)60049-4
  12. Soares-Frazão S., Canelas R., Cao Z., Cea L., Chaudhry H.M., Moran A.D., and Zech, Y. (2012). Dam-break flows over mobile beds: Experiments and benchmark tests for numerical models. J. Hydraul. Res, 50(4), 364–375. doi:10.1080/00221686.2012.689682
  13. Qian H., Cao Zh., Liu H., and Pender G. (2017). New experimental dataset for partial dam break floods over mobile beds. J. Hydraul. Res, http://dx.doi.org/10.1080/00221686.2017.1289264
  14. Howard H.C. (2008). River Morphology and River Channel Changes”. Transactions of Tianjin University, 14:254-262.Bellos C. V., Soulis V., and Sakkas J.G. (1992). Experimental investigation of two-dimensional dam-break induced flows. J. Hydraul. Res, 30(1), 47–63. doi:10.1080/00221689209498946
  15. Soares-Frazão, S. (2007). Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res, 45(Sup1), 19–26. doi:10.1080/00221686.2007.9521829
  16. Soares-Frazão S., and Zech Y. 2007. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res, 45:27-36. DOI10.1080/00221686.2007.9521830.
  17. Soares-Frazão S., and Zech Y. (2008). Dam-break flow through an idealized city. J. Hydraul. Res, 46(5), 648–658. doi:10.3826/jhr.2008.3164
  18. LaRocque, L. A., Imran, J., & Chaudhry, M. H. (2013). Experimental and numerical investigations of two-dimensional dam-break flows. Journal of Hydraulic Engineering, 139(6), 569–579. doi:10.1061/(ASCE)HY.1943-7900.0000705.
  19. Leal J.G.A.B., Ferreira R.M.L., and Cardoso A.H. (2002). Dam-break waves on movable bed. In D. Bousmar. & Y. Zech (Eds.), River flow, Proceedings of the 1st IAHR Institute Conference on Fluvial Hydraulics (pp. 981–990).
  20. Leal J.G.A.B. (2005). Experimental and mathematical modeling of dam-break waves over mobile bed open channels (PhD thesis). Universidade da Beira Interior, Covilhã (in Portuguese).
  21. Issakhov A, Imanberdiyeva M (2019) Numerical simulation of the movement of water surface of dam break flow by VOF methods for various obstacles. Int J Heat Mass Transf 136:1030–1051
  22. Fraccarollo, L., & Capart, H. (2002). Riemann wave description of erosional dam-break flows. Journal of Fluid Mechanics, 461, 183–228. doi:10.1017/S0022112002008455
  23. Leal, J. G. A. B. (2005). Experimental and mathematical modeling of dam-break waves over mobile bed open channels (PhD thesis). Universidade da Beira Interior, Covilhã (in Portuguese).
  24. McMullin, N. (2015). Numerical and experimental modeling of dam break interaction with a sediment bed (PhD thesis). University of Nottingham.
  25. Wu, G.; Yang, Z.; Zhang, K.; Dong, P.; Lin, Y.-T. (2018). A Non-Equilibrium Sediment Transport Model for Dam Break Flow Over Moveable Bed Based on Non-Uniform Rectangular Mesh. Water 2018, 10, 616.
  26. Issakhov, A., and Zhandaulet, Y. (2020). Numerical Study of Dam Break Waves on Movable Beds for Complex Terrain by Volume of Fluid Method. Water Resources Management https://doi.org/10.1007/s11269-019-02426-1