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Abstract 
Scour depth around bridge abutment is a crucial parameter to design the protective spur dike. 

Costly and time-consuming experiments make it difficult to evaluate the scour depth in the 

problems involving scour phenomena. However, soft computing and regression methods may be 

applied based on the experimental results. In this paper, a set of experiments is performed and a 

database including 127 records is collected to evaluate the relation between scour depth and five 

independent variables including abutment length, flow discharge, flow depth, spur dike length 

and Spur dike distance from abutment to upstream. This paper presents a new application of the 

multi-layer perceptron neural network (MLP), group method of data handling (GMDH), non-

linear regression (NLR) and multiple linear regression (MLR) to predict the scour depth. A 

sensitivity analysis is also performed to evaluate the influence of each variable on the scour 

depth. Results indicate that the first three methods are efficient and accurate enough to be 

applied in practical applications with determination coefficient (R2) above 90%, while, the MLR 

has shown a poor performance in this paper. It is observed that MLP and GMDH outperform 

other methods based on the test data. However, explicit equation derived by NLR has a major 

advantage to be applied in the field applications without skilled operators and computer 

packages. 
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1. Introduction  
Scouring around the bridge pier and abutment foundations is a common reason for bridge 

failures. The scour hole around bridge abutment is due to an alteration to the flow field caused 

by the placement of a structure in it. Construction of a spur dike, as an indirect method for 

preventing the scour in rivers and canals is a simple and economical method. Manufacturing of a 

protective spur dike in the upstream of the abutment makes changes in stream hydrodynamics 

around the abutment and can cause a reduction in maximum scour depth around the bridge 

 
1 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. 
2 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. Email: 

mohsen.saadat@pci.iaun.ac.ir (Corresponding Author) 



Scour depth prediction around bridge abutment protected by … 

 
AUTUMN 2021, Vol 7, No 4, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

11 

abutment. Because of expensive procedure of the experimental studies, the numerical and soft 

computing methods such as artificial neural network (ANN) and group method of data handling 

(GMDH) have been examined, recently, for predicting the maximum scour depth. 

Azmathullah et al. [1] developed a neural network model to predict the maximum depth, width, 

and location of the scour hole downstream of a sky-jump bucket. They compared the results 

obtained from the neural network with those obtained from the statistical methods. Results 

showed that despite needing a long time to train the feed forward network, the predictions are 

more satisfactory than those given by the regression equations. A feed forward neural network 

(FFNN) for predicting the scour depth formed below the ski-jumped spillways was developed by 

Azmathullah et al. [2]. They used field measurements published in the literatures for training the 

ANN model. They compared the ANN model with the traditional equations and found that the 

results obtained by ANN are more accurate. Choi and Cheong [3] used the ANN model to 

predict the local scour around bridge piers in the laboratories and the field. They found that the 

accuracy of the developed ANN model is more than some of the empirical relations. Using a 

sizable amount of the present laboratory data, an ANN model was developed by Muzzammil [4] 

for scour depth prediction at bridge abutments. The results showed that the developed ANN 

schemes are better than the regression models. Firat and Gungor [5] used the Generalized 

Regression Neural Network (GRNN) and FFNN methods to predict the scour depth around 

circular bridge piers. About 165 experimental data was used by them for developing the 

mentioned models. A comparison of the obtained results from GRNN and those obtained from 

FFNN, multiple linear regression (MLR), and empirical formula showed that GRNN may be 

applied to predict the scour depth, efficiently. Esfandmaz et al. [6] employed an ANN and 

Taguchi Method (TM) integrated approach to predict the local scour depth around the bridge 

pier during flood event. In their study, the TM reduced the number of experiments and was 

employed to analyze the results of ANN. TM was also used to find the optimal combination of 

the relevant parameters in the ANN. They found that the transfer function has the most 

significant effect on the results of the ANN. Khosravinia et al. [7] developed a multi-layer 

perceptron model to predict the maximum scour depth around abutments. The obtained results 

were compared with an empirical equation and experimental data. Results showed that the ANN 

model presented more precise results than the empirical equation. Application of artificial neural 

networks for predicting the scour depth around the bridge pier substrate with sticky sediments 

was evaluated by Rezazadeh et al. [8]. They developed an ANN model optimized by genetic 

algorithm. A comparison between the obtained results and the experimental data revealed that 

the recursive artificial neural network and genetic algorithm can improve the accuracy of the 

scour depth estimation. 

In a study performed by Kaya [9], an ANN model was developed using 380 collected data from 

FHWA (Federal Highway Administration) for studying the observed pattern of local scour at 

bridge piers. Different choices of input variables were tested and effects of the inputs on the 

coefficient of determination were investigated. An evolutionary radial basis function neural 

network (ERBFNN) model was developed by Cheng et al. [10] to predict scour depth at bridge 

piers. The performance of the ERBFNN was compared with back-propagation neural network 

(BPNN), GP, M5 regression tree, and support vector machine (SVM). The comparisons revealed 

that the ERBFNN is more accurate than the other methods. Karkheiran et al. [11] developed a 

model for investigating scour around bridge piers in uniform and armored beds, under steady 

and unsteady flow conditions. They used a feed-forward back-propagation (FFBP) artificial 

neural network (ANN) combined with evolutionary algorithms including adaptive particle 

swarm optimization (APSO) and genetic algorithms (GA). The results showed that the FFBP-
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ANN model combined with GA and APSO algorithms is more accurate than the FFBP model. 

Seifollahi et al. [12] used a Wavelet-neural network compilation method to predict the depth of 

local scouring from the cylindrical bridge pier. At first, five variables including pier diameter, 

the critical and average velocity, the average diameter of the sediments, and the flow depth, were 

passed through the wavelet filter and then passed to the ANN. The obtained results showed that 

the wavelet-neural network compilation method is more efficient than the usual neural network 

model. 

Besides the studies performed based on the neural networks, some of researchers have been 

predicted the scour hole characteristics using the genetic programming (GP). Azamathulla et al. 

[13] employed GP, ANN and regression methods to predict the local scour depth below river 

pipelines. About 398 field data sets collected from the published literatures were used to develop 

the network. Results showed that the accuracy and efficiency of the GP model is more than the 

regression equations and the ANN model. In another study, Azamathulla and Ghani [14] studied 

the local scour depth below river pipelines using GP, ANN and regression methods. To train the 

developed models, they used some published laboratory measurements. They found that 

efficiency of the GP is more than two other methods. Melihyanmazand and Kose [15] developed 

a semi-empirical model for evaluating the time-dependent variations of sediment transport in the 

scour hole at bridge abutments. Comparing the results with the empirical ones showed that those 

obtained from the developed model agreed well with the test results. Based on some 

experimental data collected from 7 study, Şarlak and Tiğrek [16] developed an ANN model for 

predicting local scour depth around bridge abutments. Their investigations showed that the 

heterogeneity of the data set and the physical context of the subject is effective in the accuracy of 

the soft computing methods such as ANN. Najafzadeh and Barani [17] used the GMDH method 

for predicting the scour around a vertical bridge pier. Two models of the GMDH network were 

developed based on the GP and backpropagation (BP) algorithm. Comparing the results obtained 

from the GMDH-GP with those obtained from GMDH-BP and some traditional equations 

indicated that although the developed GMDH-GP scheme is very time-consuming, it is more 

reliable and accurate in predicting the scour depth. A gene-expression programming (GEP) was 

used by Azamathulla [18] in order to predict scour depth at bridge abutment. It was concluded 

that the obtained results are more reasonable than those obtained by the older predictors and the 

ANN model in studying the abutment scour depth. A sensitivity analysis was performed by 

Farzin et al. [19] to evaluate the effect of various parameters of a protective spur dike on the 

scour depth reduction. The parameters were protective spur dike angle, protective spur dike 

length, main spur dike length, distance from the main spur dike, flow intensity and Froude 

number. They used the GMDH and GEP models, where the results showed that the GMDH is 

more accurate than the GEP. 

 Najafzadeh et al. [20] applied the GMDH method with a backpropagation algorithm to 

predict the scour depth around a vertical pier in cohesive soils. The results indicated that the 

GMDH-BP model yielded better predictions in comparison to some traditional equations. 

Mohammadpour et al. [21] experimentally investigated the local scour dimensions and its 

variations with time at a vertical wall abutment. Predicting the time variations of the scour depth 

was done by MLR, GEP and ANN models. Results showed that although the ANN technique 

produced better results in comparison with the GEP and MLR techniques, both GEP and MLR 

are more practical methods. Azamathulla and Yusoff [22] presented the GEP method for 

predicting the scour below underwater pipelines across river. Results showed that the developed 

GEP model is a favorable approach to predict the scour depth. Basser et al. [23] proposed an 

approach for determining the optimum parameters of a protective spur dike to control the scour 
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around the main spur dikes. They showed that the accuracy and capability of the generalization 

based Support Vector Regression (SVR) is more reliable than the adaptive neuro-fuzzy inference 

system (ANFIS) and ANN. Based on the some published experimental data, a GEP model was 

developed by Muzzammil et al. [24] to predict the scour depth at bridge piers in a bed with 

cohesive sediments. They compared the results obtained from the developed GEP with those 

from nonlinear regression model. It indicated the better performance of the GEP model. Scour 

depth around the inclined bridge piers were predicted by Esmaeili Varaki et al. [25] using 

optimized ANFIS parameters with GA, ANFIS and ANN models. The comparisons showed that 

optimization of ANFIS parameters improved the accuracy of the predictions. 

 Najafzadeh et al. [26] studied the local scour depth at bridge abutments in thinly armored 

beds and coarse sediments. They developed alternative GMDH networks using gravitational 

search algorithm (GSA), PSO and BP. Their investigations revealed that GMDH network can be 

used successfully in prediction of scour phenomena. In another work, Najafzadeh and 

Mahmoudi Rad [27] used a neuro-fuzzy model based on GMDH (NF-GMDH) for predicting the 

scour depth at bridge pier under effect of debris accumulations. The NF-GMDH network was 

developed using evolutional algorithms including GA, PSO and gravitational search algorithm 

(GSA). Comparing the obtained results showed that the NF-GMDH-PSO and NF-GMDH-GA 

had relatively similar performance. In a study performed by Karbasi and Azamathulla [28], the 

maximum depth of the scour hole downstream of a sluice gate caused by 2D horizontal jets was 

predicted using five soft computing techniques including ANN, SVR, GEP, GMDH and ANFIS. 

They showed that the accuracy of the developed ANN model is more than the other soft 

computing techniques as well as regression-based equations. Bonakdari and Ebtehaj [29] 

predicted the scour depth around a bridge pier using ANN, ANFIS and NLR methods. The 

obtained results showed that both ANN and ANFIS can predict scour depth better than the NLR. 

They also performed a sensitivity analysis on the values of the scour depth. Majedi asl et al. [30] 

used support vector machine method to improve the accuracy of the scour depth prediction 

around the inclined single and group piers. The results revealed that using the compounds of the 

sedimentary and hydraulic parameters in the support vector data model provide better results in 

comparison to using them, separately. Also, some non-linear equations were presented for 

predicting the scour depth. Zarbazoo Siahkali et al. [31] estimated the scour depth around 

circular bridge piers in non-cohesive soils using ANN, GMDH, multivariate adaptive regression 

splines (MARS), and Gaussian process models (Kriging). A comparison between the mentioned 

models and the empirical formulations showed that Kriging is more accurate than the other 

models. 

To our knowledge, there are presently limited numbers of studies proposing ANN and 

GMDH models in order to predict the scour depth at the bridge abutments in compound 

channels. In the current study, the ANN, GMDH and NLR methods are employed to predict the 

scour depth around the bridge abutment nose in floodplain of a compound channel in the 

presence of a protective spur dike at the upstream. In fact, it is tried to determine which method 

is more accurate, using 127 experimental datasets. Ultimately, by applying sensitivity analysis, 

the effectiveness of the selected parameters on the performance of the models is determined. 

 

2. Experimental procedure 
All experimental data for this research were conducted in the Institute for Soil Conservation 

and Watershed Management of Jahad Keshavarzi of Iran. The arrangement of the abutment and 

the spur dike in the experiments are presented in Fig. 1. The flume has a compound section with 

14m in length, 1m in width and a 0.2 m main channel with a depth of 0.10m in the center line. 
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Total depth of the channel was 0.80m. Plexiglass was used to build the sides of the flume with a 

supporting metal frame and the bed was made with the masonry. An abutment with cylindrical 

nose was placed in one side of the flume in the flood plain with lengths of 0.20m and 0.30m, and 

6m distance from the upstream, as shown in Fig. 2.  

 

 
Figure 1. Experimental flume section and location of the abutment 

 

 
Figure 2. Schematic of flume section and abutment location 

 

Across the channel, two layers of materials including a coarse sediment layer with a height of 

0.3m and a layer with fine materials located on the coarse layer with a height of 0.2m had been 

located in the channel bed with an average diameter equal to d50=0.001m. 

In addition, a protective spur dike with different length and distance was placed at the upstream 

of the abutment. 

In the present study, five different values of the flow discharge were used for investigating 

the scour depth. In order to measure the flow discharge, a triangular sharp-crested weir was set 

up at the end of the flume. For each value of discharge, the experiments were conducted based 

on four spur dike length, five spur dike distance from the abutment, and two abutment lengths. 

The different values of the parameters used have been shown in Table (1). More details about 

experimental setup and collecting datasets are explained in [32]. 
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Table 1. Value of parameters in the experimental study 

value parameter 

0.022 0.020 0.018 0.016 0.014 discharge Q(m3s-1) 

 0.16 0.12 0.08 0.04 spur dike length L’(m) 

0.50 0.40 0.30 0.20 0.10 spur dike distance B(m) 

0.20 and 0.30 abutment length L(m) 

 

In Table (2), the input parameters used for developing the models have been presented. The 

statistical properties are also specified in Table (3). 
Table 2. Input parameters employed for developing the models 

parameter symbol 

Abutment length L 

Flow discharge Q 

Flow depth y 

Spur dike length L′ 
Spur dike distance from abutment to upstream B 

 
Table 3. The range of values of input and output parameters within dataset 

Parameter L Q y L’ B 𝐻̂ 

min 20 14 2.95 4 10 0 

max 30 22 4.2 16 60 9.5 

 

3. Methodology 
In this paper, four well-known soft computing models, i.e., GMDH, MLP, MLR and NLR are 

employed to predict the scour depth around the bridge abutment nose. In this section, the 

fundamentals of these methods have been described. 

 

3.1 The GMDH model  
GMDH was developed by Ivakhnenko in 1968. This method is a family of learning 

algorithms that has capabilities like regression, time series forecasting and classification. GMDH 

structure like some other learning algorithms consists of small units called neurons laid in 

several layers. The first layer receives input (independent) variables where the output 

(dependent) variable is concluded from the last layer. Middle layers are called “hidden layers” 

that perform the simulation process. Each neuron in GMDH has relatively simple structure 

solely; however complex combination of neurons makes GMDH capable to simulate nonlinear 

behavior of a system. In other words, gradual complexity due to combination of neurons in 

successive layers is achieved by limited number of neurons. Generally, the structure of a neuron 

in hidden or the last layer is according to Eq. (1). This relation is identified as Kolmogorov-

Gabor polynomials in mathematics. 

𝑌(𝑥1, 𝑥2. . . , 𝑥𝑛) = 𝑎0 +∑𝑎𝑖𝑥𝑖 +∑∑𝑎𝑖𝑗𝑥𝑖𝑥𝑗 +∑∑∑𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑛

𝑘=1

+. . .

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

 (1) 

 

where "𝑛" stands for the number of input variables and x1, x2,…, xn are the input variables to the 

neuron. “Y” is the neuron output and a0, ai, aij, aijk are regression parameters determined during 

training process. Independent variables enter the first hidden layer while in next layers, inputs 

are in fact the outputs from the previous layer. In most practical applications of GMDH, a 

https://en.wikipedia.org/wiki/Wiener_series
https://en.wikipedia.org/wiki/Wiener_series
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quadratic polynomial (n=2) is applied consisting of three right hand side terms in Eq. (1). Thus 

each neuron normally has two inputs and one output. Output structure of a neuron is indicated in 

Eq. (2). 

𝐻̂ = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖
2 + 𝑎5𝑥𝑗

2 (2) 

Where "𝐻̂"is the predicted value for the maximum scour depth and parameters a0 to a5 are 

determined using neuron inputs after minimization of a common error function like Root Mean 

Square Error calculated by Eq. (3). 

𝑅𝑀𝑆𝐸 = √
∑ (𝐻𝑖 − 𝐻̂𝑖
𝑀
𝑖=1 )2

𝑀
 (3) 

Where “M” is the number of available data for training and 𝐻̂𝑖 and 𝐻𝑖 are the predicted and 

real value for “i”th training data, respectively. 

 

3.2 The MLP model 
MLP is an efficient tool for predicting different engineering phenomena because it can 

approximate a desired behavior without the need to specify a particular function. A neural 

network is characterized by its architecture (the pattern of connections between the neurons), its 

learning algorithm (the method of determining the weights on connections), and its activation 

function. Among the applied neural networks, the FFNNs are the most common models in 

predicting various phenomena. Learning these ANNs is performed by first or second order 

learning algorithms. In the first order schemes, like backpropagation and the steepest decent 

methods, the first derivative of error is used and they follow the gradient descent approach. The 

second-order algorithms, like Gauss-Newton and Levenberg-Marquardt methods, rely on both 

first and second derivatives of errors in the search for the optimal weights [33]. The optimal 

weights on the connections are found by minimizing an error function like “RMSE”.  

 

3.3 The MLR and NLR models 
Each mathematical model has two major specifications: the model structure and the incorporated 

parameters. It is required to specify them for constructing the model. In this paper, a 

multiplicative structure according to Eq. (4) is employed for NLR model based on the experience 

while Eq. (5) indicates the MLR structure. 

𝐻̂ = 𝛼 × (𝐿)𝛽 × (𝑄)𝛾 × (𝑦)𝜆 × (𝐿′)𝜅 × (𝐵)𝜃 + 𝜂 (4)  

𝐻̂ = 𝛼 × (𝐿) + 𝛽 × (𝑄) + 𝛾 × (𝑦) + 𝜆 × (𝐿′) + 𝜅 × (𝐵) + 𝜃 
(5) 

 

where 𝛼, 𝛽, 𝛾, 𝜆, 𝜅, 𝜃 and 𝜂 are the model parameters and other variables are defined as before. 

Parameter 𝜂 is employed in NLR in order to eliminate the bias effects in multiplicative form. 

Determining the incorporated parameters is known as model calibration and is performed 

through solving an optimization problem. The objective function is assumed to minimize the 

“RMSE” indicating the discrepancy between the observed and predicted values of the scour 

depth according to the training data. The decision variables are in fact the model parameters 

determined in such a way that minimum difference (RMSE) between the observed and predicted 

values are obtained. The developed optimization problem is generally non-convex and, as a 

result, efficient algorithms are required to find optimum answer. GA is one of the most famous 

algorithms suitable for solving non-convex problems. GA is available and easy to use through 

"Solver" add-in in Excel package and is employed in this research. After calibration, the 

parameter values in regression models are obtained according to Table (4). 
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Table 4. Values of incorporated parameters in MLR and NLR regression models after 

calibration 

 𝛼 𝛽 𝛾 𝜆 𝜅 𝜃 𝜂 

MLR  0.288 -0.326 4.06 -0.603 -0.149 0.239 --- 

NLR 0.012 1.657 0.067 2.185 -0.568 -0.229 -2.009 

3.4 GMDH and MLP Construction 
Regression ability of GMDH is employed in this paper to predict the maximum scour depth 

using input variables introduced in Table (2). 

Assuming five input variables for GMDH in the first hidden layer, 10 states (C(5,2)) of 

selection is possible for selecting two variables from five ones and thus 10 neurons are needed. 

In the second hidden layer, 45 selection states (C(10,2)) are possible, however various running 

of GMDH model in this research indicate very less number of neurons (about 10 or even less) is 

adequate. Thus, maximum 10 neurons are assumed in all layers of GMDH. These neurons are of 

course the superior ones among 45 possible neurons. Superior neurons are the ones with the least 

value of RMSE compared with other neurons. Consideration of GMDH performance for number 

of layers indicates four layers have enough accuracy in this research. 

Regarding points mentioned above, the GMDH structure is proposed according to Fig. 3. It is 

impossible to indicate the exact relationship between neurons in hidden layers, because the 

superior neurons are not specified before simulation. However, the relationship is obvious in the 

first layer as indicated in Fig. 3. The last layer needs only one neuron because the final output 

(𝐻̂) is a scalar variable. In Fig. 3, “Ni, j” is the “j”th neuron in “i”th layer of the network. 

 

 
Figure 3. GMDH structure with input and output variables 

 

Modeling with the MLP, at first, we determined the architecture of the neural network. To 

reach this, the Kolmogorov’s theorem was used. Based on this theorem, any function of n 

variables can be represented by the superposition of a set of “2n+1” univariate functions. This 

implies that the maximum number of the hidden neurons (h) can be given according to Eq. (6) 

[34]. 
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ℎ ≤ 2𝑛 + 1 (6) 

       

where “n” is the number of input neurons. As a result, the developed neural network has 5 

input neurons (as presented in Table (2)), 11 hidden neurons, and one neuron as the output one. 

Schematic sketch of the developed neural network is shown in Fig. 4. 

 

 
 

Figure 4. Schematic sketch of the developed neural network 

 

To train the MLP, the Levenberg-Marquardt algorithm has been employed. This algorithm 

uses Eq. (7) to calculate the weights (W) in subsequent iterations. 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − [𝐽𝑇𝐽 + 𝛾𝐼]−1𝐽𝑇𝐸(𝑊𝑜𝑙𝑑) (7) 

in which “J” is the Jacobian of the error function (E), 𝛾is the parameter used to define the 

iteration step value and “I” is the identity matrix. Finally, a hyperbolic tangent function is used 

in this paper as an activation function. To use this function, it is required to normalize the 

training data set in the range of -1 to +1. The hyperbolic tangent function is given in Eq. (8). 

𝑓(𝑥) =
𝑒𝑥𝑝( 𝑥) − 𝑒𝑥𝑝( − 𝑥)

𝑒𝑥𝑝( 𝑥) + 𝑒𝑥𝑝( − 𝑥)
 (8) 

GMDH and MLP like other learning algorithms should be trained initially and then tested for 

their performance evaluation. Most of the available data (about 80%) are required for training 

and remaining (about 20%) are employed for test. Table (5) indicates the number of employed 

data for training and testing of GMDH. For eliminating any time trend or bias, all data are 

mixed, randomly, before assigning them for training. 20% of training data are employed to test 

the neurons performance and select superior neurons in each layer. Selecting superior neurons by 

some data other than those employed for determining parameters a0 to a5 has two advantages. 

This approach enhances the “Generalization” ability and prevents the GMDH from 

“Overtraining”. Thus, selection of superior neurons in each layer is assumed as a stage of 

training process. Similar to GMDH, to train the MLP, the data set is divided into training, 

checking, and testing parts. Here, preventing the overtraining of the developed neural network 

by the training data is the reason for using checking data set. About 80% of the available data is 

used as training and checking data and the remaining ones are employed as testing data for test 
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of network. As a result, 102 data is used as the training and checking data set and 25 data are 

used as the testing data set. 

 
Table 5. The number of employed data for training and testing within GMDH 

 

GMDH Testing 

(20% of total 

data) 

GMDH Training (80% of total data) 

 

Total 

experimental 

data 

Required data for 

determining the parameters 

of Eq. (2) by minimizing the 

RMSE 

(80% of training data) 

Required data for selecting 

superior neurons in each 

layer based on minimum 

RMSE 

(20% of training data) 

25 82 20 127 

 

4. Results and Discussion 
The experimental and predicted values of the 25 testing data set have been shown in Fig. 5. 

Also, in Fig. 6, the error values of the testing data set modeled by the NLR, GMDH and MLP 

have been presented. It can be seen that the fluctuations of errors in the GMDH model are 

greater than those for the MLP and NLR models. A comparison between the experimental and 

predicted data sets is indicated in Fig. 7. As can be seen, the correlations obtained from the MLP 

model are better than those obtained by the GMDH model for the testing data. 

 

  

  
Figure 5. Predicted (Outputs) and experimental (Targets) values in terms of 25 test data 

obtained from (a) MLP, (b) GMDH, (c) NLR and (d) MLR models 
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Figure 6. Error and bias values employing 25 test data obtained from the GMDH, MLP, NLR 

and MLR models 

 

  

  
Figure 7. Determination coefficient between predicted (Outputs) and experimental (Targets) 

data applying 25 test data based on the (a) MLP, (b) GMDH, (c) NLR and (d) MLR methods 

 

To apply a comprehensive study on the developed GMDH and MLP models, a statistical 

comparison was carried out between the experimental and predicted parameters using bias, mean 

absolute error (MAE), RMSE, scatter index (SI), and correlation coefficient (R) defined in Eq. 

(9) to Eq. (12). 
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𝐵𝑖𝑎𝑠 =
∑ (𝐻𝑖 − 𝐻̂𝑖)
𝑀
𝑖=1

𝑀
 (9) 

𝑀𝐴𝐸 =
∑ |𝐻𝑖 − 𝐻̂𝑖|
𝑀
𝑖=1

𝑀
 (10) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝐻̄𝑚

× 100 (11) 

𝑅 =
∑ (𝐻𝑖 − 𝐻̄𝑚)(𝐻̂𝑖 − 𝐻̄̂𝑚)
𝑀
𝑖=1

√(∑ (𝐻𝑖 − 𝐻̄𝑚)
2𝑀

𝑖=1 ) (∑ (𝐻̂𝑖 − 𝐻̄̂𝑚)
2

𝑀
𝑖=1 )

 (12) 

where 𝐻̄𝑚 is the observed mean value, and 𝐻̄̂𝑚 is the predicted mean value. The results of the 

comparison have been shown in Table (6). As can be seen, the developed GMDH model 

overestimates the scour depth while the MLP model underestimates it. The bias value is 0.16 cm 

for the GMDH model and its value is -0.23 cm for the MLP model. Although the RMSE of the 

MLP model is greater than two other ones, the values of mean absolute error and determination 

coefficient show a better fitting of the output results with the experimental data obtained from 

the developed MLP model in comparison to the developed GMDH, MLR and NLR methods. 

The determination coefficient for MLP is 0.977 that is greater than the GMDH, MLR and NLR 

models with values equal to 0.91, 0.528 and 0.929, respectively. As a result, it is clear that the 

developed MLP model is a little more accurate than the developed GMDH model in predicting 

the scour depth. 

Investigating on the previous works performed on the scour depth prediction, it is obvious 

that there is not any works that studied the performance of the soft computing tools and 

regression methods, together, on forecasting the scour depth around the bridge abutment 

protected by a spur dike at the upstream. Najafzadeh et al. [26] evaluated the performance of the 

three GMDH based models including GMDH-BP, GMDH-PSO, and GMDH-GSA in predicting 

of the scour depth at bridge abutments. Their investigations showed that the GMDH-BP model 

has better accuracy among the developed models with R equal to 0.93. According to Table (6), 

in the present study, the developed GMDH model is more accurate than the GMDH-BP model 

with R equal to 0.954. 

In another work, Şarlak and Tiğrek [16] developed an ANN model in order to predict the 

scour depth around the bridge abutments. Based on the results reported by them, in the best 

conditions, with 5 input parameters, the R value is about 0.98 that is a little smaller than the R 

value of the developed MLP model in the present study that is about 0.99. Also, the R value for 

7 input parameters reported by Şarlak and Tiğrek [16] is equal to 0.79. 

 
Table 6. Statistics of the predicted scour depth by methods of GMDH, MLP, MLR and NLR 

employing testing data 

R2 SI 

(%) 

RMSE 

(cm) 

MAE 

(cm) 

Bias 

(cm) 

Average 

predicted value 

(cm) 

Average 

observed value 

(cm) 

Methods 

0.910 21.7 0.81 0.61 0.160 3.56 3.72 GMDH 

0.977 35.1 1.30 0.40 -0.232 3.47 3.71 MLP 

0.528 55.3 2.05 1.53 0.410 3.30 3.71 MLR 

0.929 22.9 0.85 0.74 0.222 3.48 3.712 NLR 
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5. Sensitivity Analysis 
Sensitivity analysis (SA) may be defined as considering the model output due to variations in 

input variables. There are various methods to perform SA, while mathematical approach is 

employed in this paper. Based on this approach, the differential of output variable within model 

is calculated in terms of input variables using partial differentials according to Eq. (13). For 

larger variations of variables, Eq. (14) is estimated employing Eq. (13). Afterwards, two side of 

Eq. (14) are divided by “H” and some mathematical manipulation is carried out to obtain Eq. 

(15). The coefficients in Eq. (15) are calculated using model parameters available in Eq. (4). 

𝑑𝐻 =
𝜕𝐻

𝜕𝐿
𝑑𝐿 +

𝜕𝐻

𝜕𝑄
𝑑𝑄 +

𝜕𝐻

𝜕𝑦
𝑑𝑦 +

𝜕𝐻

𝜕𝐿′
𝑑𝐿′+

𝜕𝐻

𝜕𝐵
𝑑𝐵 (13) 

𝛥𝐻 ≈
𝜕𝐻

𝜕𝐿
𝛥𝐿 +

𝜕𝐻

𝜕𝑄
𝛥𝑄 +

𝜕𝐻

𝜕𝑦
𝛥𝑦 +

𝜕𝐻

𝜕𝐿′
𝛥𝐿′+

𝜕𝐻

𝜕𝐵
𝛥𝐵 (14) 

𝛥𝐻

𝐻
≈ 2.43 ×

𝛥𝐿

𝐿
+ 1 ×

𝛥𝑄

𝑄
+ 1.88 ×

𝛥𝑦

𝑦
− 0.82 ×

𝛥𝐿′

𝐿′
− 0.3 ×

𝛥𝐵

𝐵
 (15) 

Following conclusions may be drawn from Eq. (15). 

a. “L”, “Q” and “y” have positive effect on the “H”, where 
𝛥𝐻

𝐻
 increases with increasing

𝛥𝐿

𝐿
, 

𝛥𝑄

𝑄
 and 

𝛥𝑦

𝑦
 with sensitivity coefficients of 2.43, 1 and 1.88, respectively. “L” has the most 

and “Q” has the least positive effect on the “H”.  

b. “L’” and “B” have negative effect on the “H”, where 
𝛥𝐻

𝐻
 decreases with increasing 

𝛥𝐿′

𝐿′
 

and 
𝛥𝐵

𝐵
 with sensitivity coefficients of 0.82 and 0.3, respectively. Variation of “L’” is 

more effective than variation of “B” on the “H” value. 

c. The best approach to decrease “H” is increasing “L’” and decreasing “L” to the extent 

that is possible. 

 

6. Conclusion 
Two soft computing methods including the MLP and GMDH as well as MLR and NLR were 

employed to predict the scour depth around bridge abutment. To reach this, the models were 

developed using some experimental data and then the performance of the developed models 

were investigated by 25 testing data. The inputs of the models were Abutment length (L), Flow 

discharge (Q), Flow depth (y), Spur dike length (L’) and Spur dike distance from abutment to 

upstream (B) to predict the scour depth around bridge abutment (H). The developed MLP model 

has three layers consist of an input layer with five neurons, one hidden layer with 11 neurons, 

and an output layer with one neuron. In the case of developed GMDH, investigations showed 

that for reaching an appropriate accuracy, four layers are enough. Then, in addition to five input 

neurons, the developed model has 30 neurons within three layers and one neuron in the last layer 

as the output neuron. A comparison between the developed models shows that the soft 

computing methods developed here are more accurate than the MLR and NLR models. Based on 

the results, the developed MLP model has a better determination coefficient in comparison with 

three other methods. Neglecting the lower accuracy, the NLR model is more applicable than the 

soft computing models as a result of presented explicit equation. The presented equation by NLR 

may be employed more easily in practical applications without need to skilled operators or 

computer packages. 
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