Sustainable Stormwater Management: A Holistic Planning Approach for Water Sensitive Cities

Document Type : Research Paper

Authors

1 Department of Civil Engineering, Institute of Urban Water Management, Technical University of Kaiserslautern, Kaiserslautern, Germany

2 Department of Civil Engineering, Environmental and Water Resources Engineering Division, Indian Institute of Technology Madras

Abstract

The planning of sustainable stormwater infrastructures for future water-sensitive cities requires new holistic methods. In the Indo-German research project SMART&WISE, a structured approach was de-veloped to improve the planning processes for water infrastructure systems. The developed approach attempts to map the entire decision-making process when planning suitable infrastructures. A basic distinction is made between retrofit and greenfield planning. Four analyses form the basis of the planning approach: (1) Flood Protection, (2) Water Balance, (3) Water Scarcity and (4) Heat Islands. An indexation of different analyses results enables to overlay and visualize the overall result. The approach was tested successfully in two pilot projects: An Indian pilot case in a semi-arid climate zone and a German pilot case in an arid climate zone. It could be shown that the approach is suitable to cope with heterogeneous population and settlement development, climate change and increasing resource scarcity. The approach can help to facilitate interdisciplinary collaborations (especially urban planners and engineers for urban drainage). Increase in evaporation and a decrease in heat is the decisive advantage of low impact development measures (LIDs) for a sustainable stormwater management. However, an increase in evapotranspiration is not recommended in semi-arid or arid regions, since it would further increase water stress. For regions at risk of water scarcity, a balance between water sources, storage, reuse, and demand must be achieved.

Keywords


  1. UNESCO (2019): Leaving no one behind. Paris: UNESCO (The United Nations world water development report, 2019).
  2. World Bank Group (2018): Water Scarce Cities. Thriving in a Finite World. In-ternational Bank for Reconstruction and Development / The World Bank.
  3. Difu (Hg.) (2017): Wasserinfrastrukturen für die zukunftsfähige Stadt ("Water infrastruc-tures for the sustainable city"). Beiträge aus der INIS-Forschung. Deutsches Institut für Ur-banistik gGmbH.
  4. Lloyd Owen, D. A. (2018): Smart Water Technologies and Techniques. Data Capture and Analysis for Sustainable Water Management. Newark: John Wiley & Sons Incorporated (Challenges in Water Management).
  5. Ingildsen, Pernille; Olsson, Gustaf (2016): Smart Water Utilities: Complexity Made Simple IWA Publishing. doi.org/10.2166/9781780407586.
  6. Dilly, T. C.; Scheer, M.; Schmitt, T. G.; Dittmer, U. (2019): Deutsch-indische Forschungsko-operation: Wasser- und Abwasserinfrastruktursysteme für smarte Zukunftsstädte ("Indo-German research cooperation: water and wastewater infrastructure systems for smart ci-ties of the future"). In: Wasser und Abfall (07-08), S. 12–16.
  7. Dilly, T. C.; Schmitt, T. G.; Dittmer, U. (2019): Smart Water: Konzepte für einen intelligenten Umgang mit Wasser in der Stadt der Zukunft ("Smart Water: Concepts for intelligent water management in the city of the future"). In: Korrespondenz Abwasser, Abfall 66 (10), S. 802–811.
  8. Dilly, T.C.; Dittmer, U.; Bhallamudi, S.M.; Scheer, M.; Vellaiappan, S. (2021): WISE PLANNING PROCESSES FOR THE WATER INFRASTRUCTURE IN SMART CITIES IN INDIA AND GERMANY. International Water Association. IWA World Water Congress, 24 May - 04 June 2021.
  9. CPHEEO (2019): Manual on Storm Water Drainage Systems. Volume-I Part A: Engineering Design. Hg. v. Government of India. Ministry of Housing and Urban Affairs. Central Public Healt and Environmental Engineering Organisation (CPHEEO).
  10. Henrichs, M.; Langner, J.; Uhl, M. (2016): Development of a simplified urban water balance model (WABILA). In: Water Science and Technology 73 (8), S. 1785–1795. DOI: 10.2166/wst.2016.020.
  11. DWA (2022): Merkblatt DWA-M 102 /BWK-M 3-4 - Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer -Teil 4: Was-serhaushaltsbilanz für die Bewirtschaftung des Niederschlagswassers. Deutsche Vereini-gung für Wasserwirtschaft, Abwasser und Abfall e.V., ISBN 978-3-96862-207-1.
  12. VDI (2004): Environmental meteorology. Provision for climate and air quality in regional planning. VDI 3787 Part 9.
  13. BMU (2017): Handlungsempfehlungen für die Erstellung von Hitzeaktionsplänen zum Schutz der menschlichen Gesundheit. ("Recommended actions for the development of heat action plans to protect human health"). Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Bonn.
  14. WHO (2004): Health and Global Environmental Change. Series No.2.Heat-waves: risks and responses. World Health Organisation Europe. Copenhagen.
  15. Stadt Freiburg (2019): Klimaanpassungskonzept. Ein Entwicklungskonzept für das Hand-lungsfeld „Hitze“ ("Climate adaptation concept. A development concept for the field of ac-tion - heat"). Stadtplanungsamt. Stadt Freiburg I, Breisgau.
  16. Dilly, T. C.; Sedki, K.; Dittmer, U.; Scheer, M. (2021c): Mit Regenwasser nachhaltig umgehen. Erprobung eines ganzheitlichen Planungsansatzes zur Förderung einer wasser-sensiblen Stadtentwicklung ("Dealing with rainwater sustainably. Testing a holistic planning approach to promote water-sensitive urban development"). In: Transforming Cities (3 - Zu viel oder zu wenig Wasser? Strategien für ein nachhaltiges Wasserressourcenmanage-ment), S. 62–67.
  17. DWA (2020): Arbeitsblatt DWA-A 102-2/BWK-A 3-2 „Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer – Teil 2: Emissionsbezogene Bewertungen und Regelungen“. Deutsche Vereinigung für Wasserwirt-schaft, Abwasser und Abfall e.V., ISBN 978-3-96862-046-6
  18. Romanenko, V. A. (1961): Computation of the autumn soil moisture using a universal rela-tionship for a large area. Proc. of Ukrainian Hydrometeorological Research Institute 3 12-25, 1961
  19. Dilly, T. C.; Sedki, K.; Bakhshipour, A. E.; Vellaiappan, S.; Scheer, M.; Angermair, G. et al. (2021): Development of Precedures for Holistic Planning of Sustainable Stormwater Man-agement for Water Sensitive Cities in India and Germany. 15th International Conference on Urban Drainage. Melbourne, 25.10.2021.
  20. Bakhshipour, A. E.; Dittmer, U.; Haghighi, A.; Nowak, W. (2019): Hybrid green-blue-gray de-centralized urban drainage systems design, a simulation-optimization framework. In: Journal of environmental management 249 (109364).
  21. Bakhshipour, Amin E.; Dittmer, Ulrich; Haghighi, Ali; Nowak, Wolfgang (2021): Toward Sus-tainable Urban Drainage Infrastructure Planning: A Combined Multiobjective Optimization and Multicriteria Decision-Making Platform. In: J. Water Resour. Plann. Manage. 147 (8), S. 4021049. DOI: 10.1061/(ASCE)WR.1943-5452.0001389.