Lagrangian approaches such as the Moving Particle Semi-Implicit method and Smoothed particle Hydrodynamics are the latest techniques in Computational Fluids Dynamics and have attracted the attention of many researchers. Due to the Lagrangian nature of such practices, they can simulate various problems with large deformations and a variety of boundary conditions which has led to their application in many complex engineering problems. Therefore, the accuracy of the results obtained using these methods is substantial, while various parameters affect the accuracy of the simulation. In this paper, the sensitivity of a dam-break flow simulated by the Weakly Compressible Moving Particle Semi-Implicit method associated with the particle size and Courant number is analyzed. The analysis is performed in two circumstances. First, the Courant number is fixed, and the sensitivity relative to particle size is investigated. Then, sensitivity relative to the Courant number is studied in fixed particle size. In general, it can be concluded that the smaller the particle size and Courant number, the higher accuracy and computational cost.
Chanson H, (2009). Application of the method of characteristics to the dam break wave problem. Journal of Hydraulic Research, pp: 47(1): 41-49.
Jánosi IM, Jan D, Gábor Szabó K, Tél T, (2004). Turbulent drag reduction in dam-break flows. Experiments in Fluids, pp: 37(2): 219-229.
Liao C. B, Wu M. S, Liang S. J, (2007). Numerical simulation of a dam break for an actual river terrain environment. Hydrological Processes: An International Journal, pp: 21(4): 447-460.
Wu W, Wang S. S, (2007). One-dimensional modeling of dam-break flow over movable beds. Journal of hydraulic engineering, pp: 133(1): 48-58.
Spinewine B., Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow. PhD Thesis, Univerisité de Louvain, Belgium, 2005.
Zech Y, Soares-Frazão S, Spinewine B, Le Grelle N, (2008). Dam-break induced sediment movement: Experimental approaches and numerical modelling. Journal of Hydraulic research, pp: 46(2): 176-190.
Xia J, Lin B, Falconer L. A, Wang G, (2010). Modelling dam-break flows over mobile beds using a 2D coupled approach. Advances in Water Resources, pp: 33(2): 171-183.
Fraccarollo L, Toro E.F, (1995). Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. Journal of hydraulic research, pp: 33(6): 843-864.
Aleixo R, Soares-Frazão S, Zech Y, (2011). Velocity-field measurements in a dam-break flow using a PTV Voronoï imaging technique. Experiments in fluids, pp: 50(6): 1633-1649.
Lobovský L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A, (2014). Experimental investigation of dynamic pressure loads during dam break. Journal of Fluids and Structures, pp: 48: 407-434.
LaRocque L.A, Imran J, Chaudhry M.H, (2013). Experimental and numerical investigations of two-dimensional dam-break flows. Journal of Hydraulic Engineering, pp: 139(6): 569-579.
Ritter A, (1892). Die fortpflanzung der wasserwellen. Zeitschrift des Vereines Deutscher Ingenieure, pp: 36(33): 947-954.
Deng X, Liu H, Lu S, (2018). Analytical study of dam-break wave tip region. J. Hydraul. Eng, pp: 144(5): 04018015.
Ozmen-Cagatay H, Kocaman S, (2011). Dam-break flow in the presence of obstacle: experiment and CFD simulation. Engineering applications of computational fluid mechanics, pp: 5(4): 541-552.
Harlow F.H, (1964). The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys., pp: 3: 319-343.
Hirt C.W, Nichols B.D, (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, pp: 39(1): 201-225.
Liu J, Koshizuka S, Oka Y, (2005). A hybrid particle-mesh method for viscous, incompressible, multiphase flows. Journal of Computational Physics, pp: 202(1): 65-93.
Koshizuka S, Nobe A, Oka Y, (1998). Numerical analysis of breaking waves using the moving particle semi‐implicit method. International journal for numerical methods in fluids, pp: 26(7): 751-769.
Gotoh H, Sakai T, (2006). Key issues in the particle method for computation of wave breaking. Coastal Engineering, pp: 53(2-3): 171-179.
Liu G.R., Liu M.B., Smoothed particle hydrodynamics: a meshfree particle method., World scientific, 2003.
Mohtashami A, Hashemi Monfared S.A, Azizyan Gh, Akbarpour A, (2021). Estimation of Parameters in Groundwater Modeling by Particle Filter linked to the meshless local Petrov-Galerkin Numerical Method, Journal of Hydraulic Structures, pp: 7(1): 16-37.
Mohtashami A, Hashemi Monfared S.A, Azizyan Gh, Akbarpour A, (2021). Numerical simulation of groundwater in an unconfined aquifer with a novel hybrid model (case study: Birjand Aquifer, Iran), Journal of Hydroinformatics, pp: 24(1): 160-178.
Gingold R.A, Monaghan J.J, (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, pp: 181(3): 375-389.
Lucy L.B, (1977). A numerical approach to the testing of the fission hypothesis. The astronomical journal, pp: 82: 1013-1024.
Monaghan J.J, (1994). Simulating free surface flows with SPH. Journal of computational physics, pp: 110(2): 399-406.
Moussa B.B, Lanson N, Vila J, (1999). Convergence of meshless methods for conservation laws applications to Euler equations, in Hyperbolic Problems: Theory, Numerics, Applications. pp: 31-40.
Ferrari A, Dumbser M, Toro E.F, Armanini A, (2009). A new 3D parallel SPH scheme for free surface flows. Computers & Fluids, pp: 38(6): 1203-1217.
Ferrari A, (2010). SPH simulation of free surface flow over a sharp-crested weir. Advances in Water Resources, pp: 33(3):270-276.
Hui Pu J, Shao S, Huang Y, (2013). Evaluations of SWEs and SPH numerical modelling techniques for dam break flows. Engineering Applications of Computational Fluid Mechanics, pp: 7(4): 544-563.
Yang Q, Jones V, McCue L, (2012). Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean engineering, pp: 55: 136-147.
Koshizuka S, Oka Y, (1996). Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear science and engineering, pp: 123(3): 421-434.
Lee E.S, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P, (2008). Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. Journal of computational Physics, pp: 227(18): 8417-8436.
Shakibaeinia A, Jin Y.C, (2010). A weakly compressible MPS method for modeling of open‐boundary free‐surface flow. International journal for numerical methods in fluids, pp: 63(10): 1208-1232.
Khayyer A, Gotoh H, (2010). On particle-based simulation of a dam break over a wet bed. Journal of Hydraulic Research, pp: 48(2): 238-249.
Shakibaeinia, A., Jin, Y., (2009). Lagrangian modeling of flow over spillways using moving particle semi-implicit method. in Proceeding of 33rd IAHR Congress: Water Engineering for a Sustainable Environment, pp: 1809-1816.
Khayyer A, Gotoh H, (2012). A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations. Applied Ocean Research, pp: 37: 120-126.
Xu T, Jin Y.C, (2016). Improvements for accuracy and stability in a weakly-compressible particle method. Computers & Fluids, pp: 137: 1-14.
Tsuruta N, Khayyer A, Gotoh H, (2013). A short note on dynamic stabilization of moving particle semi-implicit method. Computers & Fluids, pp: 82: 158-164.
Khayyer A, Gotoh H, Shimizu Y, (2017). Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. Journal of Computational Physics, pp: 332: 236-256.
Fu L, Jin Y.C, (2014). Simulating velocity distribution of dam breaks with the particle method. Journal of Hydraulic Engineering, pp: 140(10): 04014048.
Xu T, Jin Y.C, (2019). Modeling impact pressure on the surface of porous structure by macroscopic mesh-free method. Ocean Engineering, pp: 182: 1-13.
Shakibaeinia A, Jin Y.C, (2011). A mesh-free particle model for simulation of mobile-bed dam break. Advances in Water Resources, pp: 34(6): 794-807.
Dalrymple R.A, Rogers B, (2006). Numerical modeling of water waves with the SPH method. Coastal engineering, pp: 53(2-3): 141-147.
Courant R, Friedrichs K, Lewy H, (1967). On the partial difference equations of mathematical physics. IBM journal of Research and Development, pp: 11(2): 215-234.
Moodi, S., Azhdary Moghaddam, M., & Mahdizadeh, H. (2022). Sensitivity Analysis of Weakly Compressible Moving Particle Semi-Implicit Method in a Dam-Break Flow Simulation. Journal of Hydraulic Structures, 8(3), 56-71. doi: 10.22055/jhs.2022.41941.1233
MLA
Sadegh Moodi; Mehdi Azhdary Moghaddam; Hossein Mahdizadeh. "Sensitivity Analysis of Weakly Compressible Moving Particle Semi-Implicit Method in a Dam-Break Flow Simulation", Journal of Hydraulic Structures, 8, 3, 2022, 56-71. doi: 10.22055/jhs.2022.41941.1233
HARVARD
Moodi, S., Azhdary Moghaddam, M., Mahdizadeh, H. (2022). 'Sensitivity Analysis of Weakly Compressible Moving Particle Semi-Implicit Method in a Dam-Break Flow Simulation', Journal of Hydraulic Structures, 8(3), pp. 56-71. doi: 10.22055/jhs.2022.41941.1233
VANCOUVER
Moodi, S., Azhdary Moghaddam, M., Mahdizadeh, H. Sensitivity Analysis of Weakly Compressible Moving Particle Semi-Implicit Method in a Dam-Break Flow Simulation. Journal of Hydraulic Structures, 2022; 8(3): 56-71. doi: 10.22055/jhs.2022.41941.1233