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Abstract 

This study investigates the potential of Adaptive Neuro-fuzzy inference system (ANFIS), M5P, 
and Gaussian Process regression (GP) approaches to predict discharge coefficient (Cd) of chimney 
weir with different apex angles. Out of 110 data points, 77 arbitrarily selected observations were 
used for training, whereas the remaining 77 data points were used for testing. Input data consisted 
of h/p, y/p, L/p, and w/z, whereas Cd was an output. Four shapes of membership functions, i.e., 
triangular, trapezoidal, generalized bell-shaped, and Gaussian, were used for the ANFIS-based 
model development. Five different goodness-of-fit parameters and various graphical presentations 
were used to evaluate the performance of the machine-learning models. It was found that the M5P-
based model was superior to other implemented models in predicting the Cd with Correlation 
Coefficient (CC) (0.9532 and 0.9472), Mean Absolute Error (MAE) (0.0024 and 0.0026), (Root 
Mean Square Error) RMSE (0.0032 and 0.0033), Scattering Index (SI) (0.0048 and 0.0050), and 
Nash Sutcliffe Efficiency (NSE) (0.9085 and 0.9925) values in the training and testing stages, 
respectively. Another major outcome of this study was that the ANFIS model was better than GP 
and other MFs-based ANFIS-ti models. The sensitivity of the Cd variables is also investigated, 
which showed h/p and L/p as major influencing factors in the Cd. 
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1. Introduction  
In irrigation networks, measuring the amount of water delivered is particularly important. 

Researchers are trying to select structures with higher performance and more effective 
exploitation. There are various methods for measuring water inflow into the networks and 
controlling water level, the most common and widely used are weirs. Proportional linear weirs are 
a type of weir in which the water head changes proportion to the discharge. Due to a linear 
relationship between the water head and discharge in linear proportional weirs, the error in reading 
the water head is reflected linearly in the discharge. For other weirs, there can be a greater error. 
Therefore, finding the optimal shape is important. Different forms of proportional weirs have been 
studied by different researchers with the development of relationships and equations. Stout first 
proposed the original idea for proportional weirs. However, his attempt to build a cross-section 
that facilitated the measurement of the water head was unsuccessful due to the infinite width of 
the weir crest [1]. To solve this problem, Sutro developed the Sutro weirs by placing a linear 
proportional weir on a rectangular weir [2]. 

Ramamurthy et al. [3] investigated the weir with a quadratic cross-section on rectangular, 
triangular, and circular sections. They examined the Cd and reported a linear relationship between 
discharge and head. Keshava Murthy and Giridhar [4] considered an inverted triangular weir and 
obtained a theoretical relationship for this type of weir. They examined the experimental 
performance of an inverted triangular weir with various vertex angles and weir lengths. They 
reported the average Cd for inverted triangular weirs to be 0.61. Keshava Murthy and Giridhar [5] 
studied a weir of the chimney type. They showed that the linear amplitude of the chimney, 
compared to the inverted triangular weir, increased by more than 200%. Chatterjee et al. [6] 
conducted an experimental study of chimney weirs under submerged conditions. They compared 
the formula's performance for a submerged chimney weir with previously developed formulas for 
a sharp-crested weir. They concluded that the developed formula performed better than the 
previous methods. Chatterjee et al. [7] experimentally investigated discharge characteristics in a 
chimney weir under free-flow conditions. They provided a relationship for the coefficient of 
discharge. Hayawi et al. [8] investigated the discharge coefficient of chimney weirs at different 
heights of the channel floor under free and submerged conditions. The discharge coefficient in the 
free-flow mode increases with decreasing upstream water head, while the Cd in the submerged 
flow mode increases with decreasing drowning ratio. Vatankhah and Kouchakzadeh [9] used the 
gamma function to develop the general shape of the discharge relation for n-degree polynomial 
weirs and provided a solution for linear weirs. Vatankhah [10] investigated the amplitude of the 
linear changes of the inverted triangular weir and suggested that if the triangular cross-section is 
used instead of the rectangular cross-section, the error rate of deviation from the linear relation is 
reduced. In addition, different numerical research have been conducted on the sharp-crested weir 
[11-14]. 

Despite the previous studies, there is a few of research on using soft computing to estimate the 
discharge coefficient of proportional chimney weirs. The present research utilizes models such as 
Adaptive Neuro-Fuzzy Inference System (ANFIS), M5P, and Gaussian Process regression (GP) 
to evaluate the discharge coefficient. 

 
2. Materials and Methods 
2.1. Types of flow behavior in a chimney weir 

In the present study, different geometric parameters of the chimney weir in the discharge rate 
of 0.002 to 0.009 m3/s and water head range of 0.04 to 0.12 m above the weir crest was investigated 
using Daneshfaraz et al. [15] data. By placing the chimney weir in the flow path, two types of flow 
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behavior can be observed, and those behaviors will now be discussed. 
As seen in Figure (1-a), if the water head does not exceed the inverted triangular part of the 

weir, the first type of behavior will occur. The discharge rate is calculated using Equation (1) 
[5,15]. 

 

𝑄𝑄 =
2
3
𝐶𝐶𝑑𝑑�2𝑔𝑔𝐿𝐿ℎ3 2� −

8
15

𝐶𝐶𝑑𝑑�2𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 ℎ5 2�  0 ≤ h ≤ y (1) 
 
Suppose the volume of water behind the weir is so high that with the addition to the inverted 

triangle, it also covers the area of the rectangular weir. In that case, the second behavior type will 
be visible, as shown in Figure (1-b). The discharge rate is calculated using Equation (2) [5,15]. 

 

𝑄𝑄 =
2
3
𝐶𝐶𝑑𝑑�2𝑔𝑔𝐿𝐿ℎ3 2� −
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15

𝐶𝐶𝑑𝑑�2𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 �ℎ5 2� − (ℎ − 𝑦𝑦)5 2� � h > y (2) 
 
where Q is the discharge, Cd is the discharge coefficient, L is the weir length, g is the 

gravitational acceleration, θ is the half-angle of the vertex of the triangle, y is the vertical distance 
between the weir crest and the first part where the weir slope changes, and h is the water head 
above the weir crest. 

 
(a) (b) 

  
Figure 1. Schematic flow behavior in the face of chimney weir a) First type b) the Second type 

[15] 
 

2.2. Applied intelligent models 
Three artificial intelligence approaches were used for predicting discharge coefficients: 

Adaptive Neuro-Fuzzy Inference System (ANFIS), M5P, and Gaussian Process (GP). These 
methods will now be discussed in some detail. 

 
2.2.1. ANFIS 

According to Jang [16], an ANFIS is a hybrid network combining fuzzy and artificial neural 
aspects. It is equivalent to fuzzy inference systems (FIS) using distributed parameters. The fuzzy 
inference system (FIS) contains a set of fuzzy rules that fully describe the local behavior of the 
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system. Figure (2) displays a first-order Sugeno fuzzy model's structural design with two inputs 
and one output. 

ANFIS implements and applies hybrid-learning rules to train FIS. The ANFIS approach 
combines the two intelligence techniques by measuring the relationship between input and target 
data. It uses multiple layers of feed-forward networks to handle fuzzy parameters. Multilayer feed-
forward ANFIS network allows each node in the network to perform a specific function on signals 
received and has parameters specific to it. Essentially, it is a linear inference system corresponding 
to Takagi-Sugeno first-order inferences. 

 

 
Figure 2. The schematic design of ANFIS 

 
Layer 1 is a fuzzification layer. A set of fuzzy clusters is formulated based on membership 

functions. Layer 2 is known as a rule layer. The membership values calculated in the fuzzification 
layer are used to generate firing strengths (wi) for the rule. The 3rd layer is the normalization layer. 
Normalized firing strength belonging to each node is computed in this layer. Layer 4 is a 
defuzzification layer. Layer 5 is the summation layer. Several important factors must be 
considered when developing an ANFIS model, including the training terms, membership 
functions, form of membership functions, and fuzzy rules. The parameters are crucial for the 
model's success. 

 
2.2.2. M5P 

The M5P model was created by Quinlan [17]. Model trees can handle huge datasets efficiently. 
They can also deal with missing data without creating any ambiguity. This tree algorithm sets a 
linear regression at the terminal node by classifying or dividing various data areas into multiple 
subspaces. It applies to each sub-location of a multivariate linear regression model. There are two 
stages to the creation of a model tree. A decision tree is created in the first stage using a splitting 
criterion. They behaved class values that reach a node as quantification of the error and the 
expected reduction in error because of evaluating each attribute at that node are calculated as 
branching criteria for the M5P tree model algorithm [17]. The separation criteria predict the 
standard deviations of class values extending to nodes, permitting the basic tree model to be 
generated. The method uses the standard deviation to measure the predicted error at the terminal 
node. 
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𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑠𝑠𝑠𝑠(𝑁𝑁) −
∑ |𝑁𝑁𝑖𝑖|𝑥𝑥
𝑖𝑖=1
|𝑁𝑁| ∗ 𝑠𝑠𝑠𝑠(𝑁𝑁) (3) 

 
In Equation (3), N is the number of samples, and sd represents the standard deviation. 

 
2.2.3. GP 

The GP regression is based on the notion that adjoining observations should transfer 
information about each other [18]. The GP is a method of describing a prior explicitly across 
function space. The GP can define a prior probability over a latent function. The GP model design 
involves a kernel function. Many kernels are discussed in the literature [19-21]. Here, the 
Polynomial and Radial Basis Function (RBF) kernel are used. 
 
2.3. Statistical indicators 

The statistical indicators of CC, MAE, RMSE, NSE, and SI were used to investigate the 
accuracy of models [22-23]. 

 
CC =  ∑ (Ri−R�)(Qi−Q�)N

i=1 

�∑ (Ri−R�)2 ∑ (Qi−Q�)2N
i=1

N
i=1

  1 1CC− ≤ ≤  (4) 
MAE =  1

N
∑ |Ri − Qi|N
i=1    (5) 

RMSE= �1
N
∑ (Ri − Qi)2N
i=1   (6) 

NSE = 1 − �∑ (Ri−Qi)2
N
i=1
∑ (Qi−Q�)2N
i=1

�  1NS−∞ ≤ ≤  (7) 

SI= 
�1
N∑ (Ri−Qi)2N

i=1

Q
  (8) 

 
where CC is the Correlation Coefficient, RMSE is the Root Mean Square Error, MAE is the 

Mean Absolute Error, NSE is the Nash Sutcliffe Efficiency, and SI is the Scattering Index. The Q 
and 𝑄𝑄� represent the actual values and the mean observed values, respectively, R is the predicted 
values, and N is the total of observations [24]. 
 
2.4. Implementation of machine learning-based models 

The models were trained and tested for predicting Cd based on four input variables: h/p, y/p, 
L/p, and w/z. Machine learning models, including ANFIS, M5P, and GP, were established using 
Matlab and Weka software. 
 
3. Results and Discussion 

Here, 110 observations were collected; including measurements of h/p, y/p, L/p, w/z, and Cd. 
Table (1) reveals that h/p has a higher negative correlation (-0.6775) with Cd.  

Out of 110 observations, 77 were chosen for the training phase and the rest for the testing phase 
[25]. h/p, y/p, L/p and w/z were independent variables, whereas Cd was dependent. Table (2) shows 
the model components' descriptive data statistics for training and testing data sets. 
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Table 1. The results of the correlation matrix 
Variables (-) h/p y/p L/p w/z Cd 

h/p 1     

y/p 0.059551 1    

L/p 0.213261 0.279243 1   

w/z 7.56E-13 -0.93496 6.73E-17 1  

Cd -0.67755 -0.38013 0.220204 0.456796 1 
 

Table 2. The statistics of model 

Statics 
h/p y/p L/p w/z Cd 

Training 
Mean 1.392393 0.910631 2.736549 1.144406 0.664879 

Median 1.428571 0.828571 2.528571 1.079902 0.662973 
Standard Deviation 0.50138 0.258106 0.212078 0.309522 0.010691 

Kurtosis -1.13825 -0.96737 -2.05333 -1.33073 0.313114 
Skewness 0.064846 0.374496 0.026495 0.266493 0.645531 
Minimum 0.571429 0.559118 2.528571 0.753554 0.646613 
Maximum 2.333333 1.385309 2.95 1.600335 0.697535 

Confidence Level (95.0%) 0.113799 0.058583 0.048136 0.070253 0.002427 
 Testing 

Mean 1.393939 0.93966 2.745671 1.103879 0.665375 
Median 1.333333 0.966667 2.95 1.079902 0.664821 

Standard Deviation 0.520215 0.248274 0.213883 0.292291 0.010301 
Kurtosis -0.90186 -1.04983 -2.12903 -1.03808 -0.76897 

Skewness 0.164531 0.213658 -0.06356 0.439045 0.177143 
Minimum 0.571429 0.559118 2.528571 0.753554 0.648 
Maximum 2.333333 1.385309 2.95 1.600335 0.684757 

Confidence Level (95.0%) 0.18446 0.088034 0.07584 0.103642 0.003653 
 
The triangular, trapezoidal, generalized bell shapes, and Gaussian shapes of membership 

functions (MFs) were chosen to predict Cd. The optimum number of MFS are 4, 3, 4, and 4 for 
input variables. In Table (3), the performance of the triangular MF–based ANFIS (ANFIS-ti) 
model is better than other ANFIS-based models for predicting the Cd. The results of CC, MAE, 
RMSE, SI, and NSE for the training phase are 0.9652, 0.0018, 0.0028, 0.0042 and 0.9317, 
respectively. In addition, the results for the test phase are 0.9505, 0.0025, 0.0032, 0.0048 and 0.9, 
respectively. Figure (3) represents that the predicted values using ANFIS-based models is closer 
to the agreement line. Table (3) and Figure (6) confirm that the predictive performance of the 
ANFIS-ti-based model is better than other ANFIS-based models in predicting Cd. 
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Figure 3. Actual against predicted Cd in ANFIS-based models a) Train phase, b) Test phase 

 
Table 3. Performance of all applied models 

Models 
CC MAE RMSE NSE SI 

Training 
ANFIS-ti 0.9652 0.0018 0.0028 0.9317 0.0042 
ANFIS-tp 0.9571 0.0021 0.0031 0.9161 0.0046 
ANFIS-gb 0.9639 0.0019 0.0028 0.9292 0.0043 
ANFIS-ga 0.9649 0.0019 0.0028 0.9311 0.0042 

M5P 0.9533 0.0023 0.0033 0.9063 0.0049 
GP-poly 0.9532 0.0024 0.0032 0.9085 0.0048 
GP-rbf 0.9703 0.0018 0.0026 0.9415 0.0039 

 Testing 
ANFIS-ti 0.9505 0.0025 0.0032 0.9001 0.0048 
ANFIS-tp 0.9123 0.0034 0.0042 0.8300 0.0063 
ANFIS-gb 0.9220 0.0030 0.0040 0.8467 0.0060 
ANFIS-ga 0.9293 0.0029 0.0038 0.8602 0.0057 

M5P 0.9568 0.0024 0.0032 0.9022 0.0048 
GP-poly 0.9472 0.0026 0.0033 0.8925 0.0050 
GP-rbf 0.9344 0.0026 0.0037 0.8700 0.0055 

 
Implementation of the M5P-based model uses an iterative process. Many trials were performed 

to attain the values of optimum user-defined parameters. The optimum values of user-defined 
parameters are 4. Here, an unpruned model was developed for predicting Cd. In Table (3), the 
performance of the M5P model is desirable for predicting the Cd. The CC, MAE, RMSE, SI, and 
NSE for the training phase are 0.9533, 0.0023, 0.0033, 0.0049 and 0.9063, respectively. The value 
of these parameters for the test phase are 0.9568, 0.0024, 0.0032, 0.0048 and 0.9022, respectively. 
Figure (4) shows the results of the actual and predicted amounts in the M5P-based model. 
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Figure 4. Actual against predicted Cd in M5P-based model a) Train phase, b) Test phase 

 
Implementation of GP-based models is iterative, similar to the M5P model. Many trials were 

carried out to attain the values of optimum user-defined parameters. Here, the polynomial and 
RBF were used to predict the Cd. For the polynomial (GP-polynomial), the optimal user-defined 
parameters are 0.01 for noise and d=3. In addition for the RBF (GP-RBF), the value of noise is 
kept constant (0.01) for fair comparison among both developed models and γ=1. As seen from 
Table (3), the performance of the GP-polynomial-based model is better than the GP-RBF-based 
model for predicting Cd. In the train phase, the results of the CC, MAE, RMSE, SI, and NSE 
statistical indicator are 0.9532, 0.0024, 0.0032, 0.0048, and 0.9058. For the test phase, the results 
are 0.9472, 0.0026, 0.0033, 0.005 and 0.9925, respectively. Figure (5) shows that the performance 
of the GP-polynomial-based model is better than GP-RBF-based models in predicting Cd. 

 

  
Figure 5. Actual against predicted Cd in GP-based models a) Train phase, b) Test phase 
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A comparison of the ANFIS, M5P, and GP models shows that the results in M5P model are 
more favorable than other models. Compared to ANFIS and GP-based models, the triangular 
MFS-based ANFIS model results are good than the GP and ANFIS-based models. Figure (6) 
shows the values of Cd in ANFIS, M5P, and GP-based models. The results showed that the values 
of the predicted Cd using M5P model are the best. Figure (6-c) shows that predicted values using 
M5P-based models match actual values with minimum deviation (Figure 6-d). 
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Figure 6. Actual against predicted values of Cd in various machine learning-based models a) 

Train phase, b) Test phase, c) Performance, d) RE 
 
To investigate the inconsistency of the mass flow rate prediction with the actual values, the 

25%, 50%, and 75% quartile values of the actual and predicted Cd values are listed in Table (4). 
The box plot diagram and Taylor diagram were used to examine the models' accuracy (Figure 7 
and 8). Figure (7 and 8), display all variations between the actual and predicted values. 

When both Table (4) and Figure (7) are examined, the min, the max, 25% quartile value (Q1), 
75% quartile value (Q3), and the median value (Q2) for M5P and the actual values are very close. 
When comparing the actual data and the predicted values of the M5P-based model, the width of 
the higher and lower boxes is almost the same (Figure 7-a and b). 

 
Table 4. Quantitative statistics of actual data and predicted values for all models 

Statistic Actual ANFIS-ti ANFIS-tp ANFIS-gb ANFIS-ga M5P GP-poly GP-rbf 
 Training 

Minimum 0.6466 0.6475 0.6475 0.6476 0.6477 0.6460 0.6460 0.6480 
Maximum 0.6975 0.6905 0.6933 0.6937 0.6930 0.6900 0.6910 0.6930 

1st Quartile 0.6575 0.6576 0.6580 0.6574 0.6575 0.6570 0.6580 0.6580 
Median 0.6630 0.6637 0.6633 0.6631 0.6634 0.6640 0.6640 0.6640 

3rd Quartile 0.6715 0.6723 0.6724 0.6724 0.6723 0.6720 0.6720 0.6720 
IQR 0.0140 0.0147 0.0144 0.0150 0.0148 0.0150 0.0140 0.0140 

 Testing 

Minimum 0.6480 0.6478 0.6482 0.6478 0.6478 0.6470 0.6460 0.6490 
Maximum 0.6848 0.6835 0.6812 0.6850 0.6858 0.6840 0.6840 0.6890 

1st Quartile 0.6580 0.6595 0.6602 0.6587 0.6587 0.6580 0.6580 0.6580 
Median 0.6648 0.6630 0.6637 0.6636 0.6634 0.6630 0.6630 0.6630 

3rd Quartile 0.6717 0.6706 0.6724 0.6704 0.6700 0.6700 0.6700 0.6700 
IQR 0.0137 0.0111 0.0122 0.0117 0.0113 0.0120 0.0120 0.0120 
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Figure 7. Box plot of relative errors using all applied models a) Train phase, b) Test phase 

 
According to Taylor diagram, the best performing model is closer to the actual point. Taylor 

diagram indicates that the M5P-based model has the highest accuracy in the testing phase for 
predicting Cd (Figure 8). 

  
Figure 8. Taylor diagram a) Training, b) Testing 

 
3. Conclusions 

In the present research, chimney weirs were tested with apex angles of 74˚, 84˚, 94.4˚, 106˚, 
and 116˚ at crest heights of 0.06 and 0.07 m. The discharge and head above the crest for the 
modeled weirs were in the range of 0.002 to 0.009 m3/s, and 0.04 to 0.12 m, respectively. The 
various machine learning-based models Adaptive Neuro-Fuzzy Inference System (ANFIS), M5P, 
and Gaussian Process (GP) were used to predict the Cd. 5 various goodness-of-fit parameters and 
various graphical presentations were used to evaluate the performance of the developed machine 
learning models. It was found that M5P based model was superior to other models in predicting 
Cd. The results showed that the ANFIS-ti model was better than GP and other MF-based ANFIS 
models. On the other hand, the performance of the Trapezoidal MF-based ANFIS (ANFIS-tp) 
model was the worst among all applied models. Based on the sensitivity results using M5P models, 
h/p is followed by L/p.  
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