
 

 
SPRING 2023, Vol 9, No 2, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

  

  Journal of Hydraulic Structures  

 J. Hydraul. Struct., 2023; 9(2): 48-74 
DOI: 10.22055/jhs.2023.44288.1259 

 

 
 

  

 

 

Uncertainty Quantification of Steady-State Seepage Through 

Earth-fill Dams by Random Finite Element Method and 

Multivariate Adaptive Regression Splines 
 

Milad Kheiry1 

Farhoud Kalateh2 

 

Abstract 
This paper aims to investigate the effects of uncertainty in soil characteristics and dam geometry on seepage 

flow using the hybrid Multivariate Adaptive Regression Splines (MARS) and Monte Carlo Method (MCM). 

A computer program based on Darcy flow is developed in the Fortran language to calculate the discharge 

flow. After validating the numerical FORTRAN code with experimental outputs, firstly, the Deterministic 

Finite Element Method (DFEM) was used to obtain Seepage Exit Discharge (SED) in Steady State 

Condition (SSC), and MCM was used for probabilistic analysis to account for uncertainty in random 

parameters. The program monitored Pore Water Pressure (PWP) changes and integrated them into the 

time/space domains. To ensure minimal error, the results of the models were compared by Standard Error 

Calculation (SEC). The research also introduced a new component to compare the seepage flow resulting 

from the analysis of models in a dimensionless manner called the Effective Discharge MARSplines (EDM). 

In the present research, the combination of Machine Learning (ML) and MCM algorithms was used in an 

innovative way for Random Finite Element Method (RFEM) calculations. The results of the research 

indicate that a 17.9% increase in the Hd/Hu ratio in the deterministic analysis results in a 29.3% decrease in 

EDM, while in the probabilistic analysis, a similar increase leads to a 19.02% decrease in EDM. Upon 

comparing deterministic and stochastic models, it can be concluded that deterministic analysis is more 

accurate and exhibits less error when compared to the probabilistic model. 
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1. Introduction 
Seepage Analysis (SA) is one of the most essential problems in earth/rockfill dam engineering 

as it reveals potential water paths through porous media and evaluate the risk of piping, internal 

erosion, and stability failures. Over the past century, seepage through earth and rockfill dams has 

emerged as a significant and widespread cause of failure. [1-4]. The MARS method is a data-
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driven technique applied in various fields, especially geo-technical and geo-mechanical issues, 

and is computationally efficient method that builds flexible models using splines context and 

approximates the model using a set of basic functions. Zhang & Goh [5] used MARS for 

geotechnical systems and compared it with other machine learning methods. Their result indicated 

that MARS outperformed other methods regarding accuracy and computational efficiency, and 

also showed that MARS effectively analyzed relationships between permeability, rock quality 

designation, and depth of soil/rock. MARS has been used in various studies related to geotechnical 

engineering, including slope stability analysis 2D/3D slope stability analysis in anisotropic and 

heterogeneous soils [6], reliability analysis of slope failure [7], and permeability correlation 

between [8]. 

Several studies have demonstrated the effectiveness of MARS in dam problems, for example, 

in a study by Kumar et al [9], MARS was used to perform a reliability analysis of the slope failure 

of the Durgawati earth dam that located in India. The study calculated the β reliability index using 

MARS method under steady and unsteady seepage conditions. The Factor of Safety (FOS) of the 

Durgawati dam was computed using a modified Bishop’s method, and seepage and slope stability 

analysis were performed using Geo Studio (2007) software include; SEEP/W and SLOPE-W 

subprograms. 

Wang et al [10] introduced a high-performance stochastic stability investigation method for 

earth dams using MARS and soft computing algorithm. This approach is applied for the Ashigong 

earth dam under transient seepage, and the study systematically explores the effects of 

uncertainties of soil parameters and water level fluctuation on the slope failure of probability. 

Zheng et al [11] presented an approach for estimating the liquefaction-induced settlement of 

buildings with shallow foundations. Their method utilizes the MARS algorithm and artificial 

intelligence (AI) that its data is generated through the various finite difference method (FDM) 

analysis. The AI data cover various properties of the soil, structure, and ground motion. The impact 

of each input parameter and their coupled interactions on the liquefaction-induced settlement is 

quantified using several relative analyses executed using MARS. 

Vu et al [12] suggests a new data-driven method for predicting potential of soil erosion using 

MARS and the Social Spider Algorithm (SSA). By fine-tuning hyper-parameters, SSA optimizes 

MARS performance by separating input data into 'erosion' and 'non-erosion' regions. The method 

proposed by Deng et al [13] combines sliced inverse regression (SIR) and MARS to effectively 

establish the relationship between soil properties and safety factors. In their work, Karhunen-

Loeve expansion (K-L) is used to simulate soil variability, and the method is validated with one- 

or two-layer slopes. 

Aleatory uncertainty is related to randomness in nature, which considers the essence of nature 

and is known by the titles of external uncertainty, inherent uncertainty, objective uncertainty, 

random uncertainty, fundamental uncertainty, and real-world uncertainty. On the other hand, 

Epistemic uncertainty researches the state of human knowledge and information about a physical 

system and the ability to measure uncertainty. This type of uncertainty is known as functional, 

internal, subjective, and incompleteness [14]. 

Soil analysis is an important aspect of environmental science, and it involves dealing with 

different types of uncertainties. Aleatory uncertainty in soil analysis refers to the inherent 

randomness in nature, derived from natural variability of the physical world, such as the variability 

in soil properties due to different soil types, weather conditions, and other natural factors. 

Epistemic uncertainty, on the other hand, refers to the imperfection of knowledge, such as 

incomplete data, inadequate understanding of the underlying processes, or imprecise evaluation 

of the related characteristics. In soil analysis, epistemic uncertainty can arise from the lack of 
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information about the soil properties, such as the soil texture, organic matter content, and nutrient 

availability, which can affect the accuracy of the analysis results. Understanding and quantifying 

these uncertainties are crucial for the interpretation and communication of the soil analysis results 

and for making informed decisions based on the available information. 

Zhang et al [15] proposed the Mesh-less Moving Kriging method (MMKM) with Monte Carlo 

Integration to address the seepage problem in a heterogeneous earth dam. This method eliminates 

the need for meshing in the creation of shape functions and numerical integration.  

Ahmed et al [16] stated that the generation of the electric field is one of the effects of the flow 

of the seepage flow through the porous medium, which can be used to estimate the path and speed 

flow. Their plan was to use the Self-Potential Method (SPM) based on the electrical concept called 

Flow Potential Field (FPF) to remotely measure groundwater flow and also determine the path and 

velocity flow in the Earth dam with considering uncertainty and using Monte Carlo Markov Chains 

(MCMC). Fukumoto et al [17] solved the seepage flow estimation and boiling of saturated sandy 

soil due to seepage by Boltzmann network coupling and Discrete Element Method (DEM) in two-

dimensional geometry.  

Su et al [18] conducted an assessment of the seepage control mechanism under a dam using 

deterministic and uncertain approaches. They computed the seepage field and uncertain seepage 

field before and after implementing anti-seepage tools. Johari and Talebi [19] performed a 

stochastic analysis in unsaturated conditions, considering rainfall. They used the RFEM for 

uncertainty analysis of soil parameters. They developed a MATLAB program and utilized the soil-

water retention curve (SWRC) to analyze slope instability alongside seepage flow. They also 

referenced a model proposed by Johari and Hooshmand-Nejad [20] to estimate the hysteretic 

SWRC in soil. 

Zhao et al [21] conducted a three-dimensional study on embankment seepage using a 

combination of the Monte Carlo method and a three-dimensional multimedia random field. They 

varied the coefficient of variation (COV) and fluctuation scales to analyze seepage. The foundation 

was modeled in layers, and the multimedia random field was based on the local average 

subdivision technique. 

By using 1000 cases soil samples for database, Johari, Heydari & Talebi [22] developed the 

Scaled Boundary Finite Element Method (SBFEM) for SA in the foundation of dam. Then, by 

MARS, an equation was created to predict seepage flow; input parameters for the MARS-based 

model include structure height, upstream water level, and anisotropy ratio of hydraulic 

conductivity.  

Kalateh and Kheiry [23] conducted SA of homogeneous earth dams, focusing on the 

application of MCS. They investigated SED in different geometries of dams and slopes, and their 

findings revealed that the average SED computed with MCS analysis was lower than the SED 

values in deterministic model. This study highlights the significance of considering stochastic 

analysis and spatial variability in hydraulic parameters when assessing seepage in earth dams. 

There are two main objectives of this research, include: a. Estimating the effect of uncertainty 

of soil hydraulic conductivity (SHC) in the SED of the dam b. Comparison deterministic and 

stochastic MARS methods for the calculation of the EDM considering Geometry, Soil properties 

as random variables. In general, an overview of process of this research is shown Figure 1.  

In previous researches, RFEM was used to calculate seepage based on traditional algorithms 

that, in this research, by using a new method based on the combination of two algorithms of ML 

and MCM, SED analysis is calculated probabilistically. Also, in the current research, a new 

parameter called EDM was used to compare the results, which provides the possibility of 

dimensionless comparison. 
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Figure 1. An overview of the comparison of two deterministic and probabilistic methods in the 

current study. 

 

2. METHODS 
To numerically solve the Hydro-Mechanical equations in the porous medium, Smith & 

Griffiths [24] have written a code in the FORTRAN programming language that calculates the 

Seepage flow rate and hydraulic head in the homogeneous and heterogeneous earth dams. This 

code is written in a deterministic manner, which in this research has been tried to be developed by 

considering uncertainty and converting MCS. In this research, the uncertainty of the dam has been 

analyzed with the hybrid algorithm of the MCS and MARS methods, which is shown 

schematically in Figure 2. 

This FORTRAN code for solving seepage equations is similar to solid mechanics of problem 

codes that are inspired by the solution of static and dynamic equilibrium calculations. By using 

the finite element method, Laplace's differential equation is solved; however, instead of 

displacement and force variables in mechanic problems, PWP and seepage discharge are used. 
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Figure 2. Process of MCS- MARS algorithm to use in the present research. 

 

Governing equations 
The Seepage flow in porous structures is a challenging phenomenon that can be analyzed using 

the Laplace or Poisson equation. While Poisson's equation is commonly used as the governing 

equation for seepage flow, Laplace's equation provides a more comprehensive understanding of 

the underlying physics. The general form of Laplace's equation is: 

 

𝑘𝑥
𝜕2𝜑

𝜕𝑥2 + 𝑘𝑦
𝜕2𝜑

𝜕𝑦2 = 𝑞  (1)  

 

In equation (1), Ky and Kx are the soil permeability(m/s) in vertical and horizontal axes 

respectively, φ means fluid flow potential or piezometer head (m), which q represents the SED 

which its unit is m3/s. Equation (1) applies to steady flow in a homogeneous soil medium. 

However, in unsteady conditions, the equation must be modified to account for changes in 

hydraulic head over time: 
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In equation (2), p is hydraulic head (m) and ∂θ/∂t is the humidity volume changes into porous 

media with time. The Laplace formula for steady state can also be represent: 

 

𝑘𝑥
𝜕2𝜑

𝜕𝑥2 + 𝑘𝑦
𝜕2𝜑

𝜕𝑦2 = 0  (3)  

 

Through the utilization of the FEM and discretization of the equation (3), it is transformed into 

following equation: 
 

[𝑘𝑐]{𝜑} = {𝑞}  (4)  

 
In equation (4), global symmetric coefficients matrix is [Kc], the vector nodal of hydraulic head 

{φ}, and the SED vector{q}. Using the FEM, equation (4) is changed: 
 

𝜑 = [𝑁]{𝜑}  (5)  

 
The weight function and the shape function are the same (Wi=Ni), so the general form of the 

[Kc] matrix is written as follows: 

 

∬( 𝑘𝑥
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑖

𝜕𝑥
+ 𝑘𝑦

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑦
)𝑑𝑥𝑑𝑦 = 0  (6)  

 

Furthermore, it is possible to express the matrix of coefficients in the following manner: 
 

[𝐾𝑐] = ∬([𝑇]𝑇[𝐾][𝑇]) 𝑑𝑥𝑑𝑦  (7)  

 
The matrix of properties [K] is: 

 
𝐾 = [

𝑘𝑥 0
0 𝑘𝑦

]  (8)  

 
If we make the assumption that the primary axes of the permeability tensor align with the x 

and y coordinate axis, then the matrix [T] bears a resemblance to the matrix [B] commonly 

encountered in concept mechanics of solid. 
 

MARS computational method 
In recent years, the use of ML and soft computing methods has caused a revolution in the 

modeling of hydraulic structures, and many researchers have used these methods to predict the 

behavior of hydraulic structures [25-29]. Analysis of steady and unsteady water flow has been one 

of the basic applications of soft computing [29-32]. MARS algorithm, which was first introduced 

by Friedman [33], has become a well-liked non-parametric regression technique due to its high 

flexibility and accuracy [34]. The MARS method can be used for both regression and classification 

problems. For regression problems, the MARS model predicts the value of a continuous response 
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variable, while for classification problems, the MARS model predicts the probability of a binary 

or multi-class response variable. 
The MARS method is a deep non-parametric data driven technique that can be used to model 

complex relationships between a response variable and multiple predictor variables. The MARS 

model is constructed by combining basis functions in a linear and nonlinear way, and it can be 

used for both regression and classification problems. The MARS method is particularly useful for 

processing high-dimensional data and large data samples (Figure 3). 
 

 
Figure 3. Using MARS algorithm from basis function for predicting. 

 
The advantage of MARS is to model complex relationships between a response variable and 

multiple predictor variables. The MARS method is a combination of Recursive Partitioning 

Regression (RPR) and the Spline method, which allows for the processing of high-dimensional 

data (data that has many predictor variables) and large data samples. The MARS model is obtained 

by a combination of Basis Function values (BF), Maximum Interaction (MI), and Minimum 

Observation (MO) by trial and error. The Basis Function values are the building blocks of the 

MARS model, and they are used to construct the model by combining them in a linear or nonlinear 

way. 

MARS can handle missing data by using a technique called "backfitting." Here is how it works: 

a) The model is first fit to the complete cases, which are the cases with no missing data. b) The 

model is then used to impute the missing values for each incomplete case. c) This is done by 

predicting the missing value using the model and the available values for that case. d) The imputed 

values are then used to update the model. e) This is done by refitting the model to the complete 

cases and the imputed values for the incomplete cases. f) The process of imputing missing values 

and updating the model is repeated until convergence is achieved. 

Backfitting is an iterative algorithm that can handle missing data in a flexible and efficient way. 

It allows MARS to use all available data to estimate the model parameters, even when some data 

is missing. However, it is important to note that the accuracy of the imputed values depends on 

the quality of the model and the available data. Therefore, it is important to carefully evaluate the 

imputed values and the overall performance of the model when dealing with missing data. 
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The MARS builds a model by partitioning the input space into smaller regions and fitting a 

linear regression model to each region. The basis equation governing the MARS algorithm can be 

written as follows: 

 

𝑦 = 𝛽0 + ∑ 𝑗 = 1 𝑡𝑜 𝑀. 𝛽𝑗 . 𝐵𝑗(𝑥)  (9)  

 

where y is the response variable, x is the vector of predictor variables, β0 is the intercept term, 

βj are the coefficients for the basic functions Bj(x), and M is the total number of basic functions 

used in the model. The basic functions used in MARS are piecewise linear functions called "hinge 

functions" and "constant functions". The hinge functions are defined as: 
 

𝐵𝑗(𝑥) = max(0, 𝑥 − 𝑡)   𝑓𝑜𝑟   𝑥 ≥ 𝑡  (10 )  

𝐵𝑗(𝑥) = 0   𝑓𝑜𝑟   𝑥 < 𝑡  (11 )  

 
where t is the knot point that determines the location of the hinge function. The constant 

functions are defined as: 
 

𝐵𝑗(𝑥)  =  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥  (12 )  

 
The MARS algorithm uses a forward stepwise approach to select the best set of basic functions 

and knot points that minimize the sum of squared residuals between the predicted values and the 

actual values. The algorithm starts with a single constant function and adds hinge functions one at 

a time until a stopping criterion is met. The stopping criterion can be based on a maximum number 

of basic functions, a minimum improvement in the model fit, or a maximum complexity penalty. 

Overall, the MARS algorithm is a flexible and powerful method for modeling complex 

relationships between multiple predictor variables and a response variable. 

The weight of the smoothness penalty (WS) is a hyperparameter that controls the strength of 

the penalty term. A higher value of WS results in a smoother model with fewer knots, while a 

lower value of WS allows for more flexibility and more knots in the model. The optimal value of 

WS depends on the complexity of the data and the trade-off between bias and variance in the 

model. WS is a hyperparameter in MARS that controls the smoothness of the model and helps to 

prevent overfitting. 
 

MSC formulation 
Given a PDF for a stochastic variable X, the set of values for which (x) is positive is determined. 

The expected value of X can then be calculated, resulting in a solution expressed as a function 

g(X). 
 

𝔼(𝑔(𝑋)) = ∑ 𝑔(𝑥)𝑓𝑋(𝑥) 
𝑥𝜖𝑋   (13 )  

 

 

So, if X is discrete, and 

 

𝔼(𝑔(𝑋)) = ∫ 𝑔(𝑥)𝑓𝑋(𝑥)𝑑𝑥
 

𝑥𝜖𝑋
  (14 )  
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To compute the average g(x) for total samples can considered MSC method as: 
 

𝑔𝑛̃(𝑥) =
1

𝑛
∑ 𝑔(𝑥𝑖)𝑛 

𝑖=1   (15 )  

 
Which we call the Monte Carlo estimator of E(g(X)). If E(g(X)), exists, at that point the weak 

law of high numbers tells us that for any arbitrary little ε: 
 

lim
𝑛→∞

𝑃(|𝑔𝑛̃(𝑋) − 𝔼(𝑔(𝑋))| ≥ 𝜖) = 0  (16 )  

 
In the FORTRAN code of this study, iteration loops are used for MCM, and according to Figure 

2, in order to check the convergence, a sub-program has been created for all elements continuously 

in a loop that compares the hydraulic head difference obtained in the n iteration with its achieved 

value in the n-1 iteration, and if this difference is less than the tolerance error, then the program 

stops. In the next part of the algorithm, the data obtained from the repeated executions of the 

FORTRAN program inter in the MARS model is a connection between the EDM and input 

variables. 
 

Statistical Indexes 
In the second step, next to the modeling of the FORTRAN program, the data is analyzed by 

the MARS method. The result of these two processes is presented in the form of a specific equation 

for two deterministic and probabilistic conditions, and at this step, the error values of the equations 

should be investigated by statistical measures. The Statistical indices include; Coefficient of 

Determination (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Relative Root 

Mean Square Error (RRMSE), and Relative Standard Error (RSE) were used, which are defined as 

follows [35, 36]: 
 

𝑀𝐴𝐸 =
∑ |𝑓𝑚𝑖−𝑔𝑚𝑖|𝑛

𝑖=1

𝑛
,  (17 )  

𝑅𝑆𝐸 =
∑ (𝑔𝑚𝑖−𝑓𝑚𝑖)2𝑛

𝑖=1

∑ (𝑓𝑚̅̅ ̅̅ ̅−𝑓𝑚𝑖)2𝑛
𝑖=1

,  (18 )  

𝑅𝑅𝑀𝑆𝐸 =
1

𝑒
√

∑ (𝑓𝑚𝑖−𝑔𝑚𝑖)2𝑛
𝑖=1

𝑛
  (19 )  

𝑅 =
∑ (𝑓𝑚𝑖−𝑓𝑚̅̅ ̅̅ ̅)(𝑔𝑚𝑖−𝑔𝑚𝑖̅̅ ̅̅ ̅̅ )𝑛

𝑖=1

√∑ (𝑓𝑚𝑖−𝑓𝑚̅̅ ̅̅ ̅)2 ∑ (𝑔𝑚𝑖−𝑔𝑚𝑖̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

2𝑛
𝑖=1

,  (20 )  

𝜌 =
𝑅𝑅𝑀𝑆𝐸

1+𝑅
,  (21 )  

 
Validation of computational program 

Numerical models need to be compared with laboratory or field models to ensure the validity 

of the results. In the present research, the experimental model of Kouhpeyma et al [37] was used 

for validation, which was implemented in a Flume with dimensions of 1.1, 1, and 0.15 m for the 

length, height, and width of the tank, respectively. The dimensions of physical modeling (Figure 

4) were chosen on a small scale, but granular soil was selected based on real materials. For seepage 

modeling, a water tank was used, which is equipped with 11 piezometers at horizontal distances 
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of 10 cm from each other on the base and two pipe overflows in the downstream and upstream 

tanks to adjust the water level (Figure 5). 

 

 
Figure 4. The 3D geometry of the physical model of the earth dam by [37]. 

 
Figure 5. View of the physical model of Kouhpeyma et al [37]. 

 

The amount of seepage for reservoir level equal to 0.495 m of the reservoir and for the dam 

body with the properties of the Figure 4 was calculated by the numerical model, and the results of 

the seepage and hydraulic head were compared with the experimental outputs (Figure 6). Also, 

according to Table 1, the difference between the numerical values obtained from the FORTRAN 

program and the laboratory data dam is very low and about 0.31%. 
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Figure 6. Comparison of hydraulic head obtained from the physical model of Kouhpeyma et al 

[37] with the numerical results of the present study. 

 
Table 1. Comparison of Seepage rate results in Earth dam with laboratory model. 

 

Mesh Convergency Check 
Upon achieving convergence, additional mesh refinement no longer affects the results, and the 

model and its outcomes become independent of the mesh. This mesh convergence study serves to 

verify that the FEA model converges to a solution and to justify the mesh independence. The study 

involves altering the size and configuration of the FEA mesh by disabling the automatic meshing 

feature of the FEA solver and modifying the mesh parameters in three directions. The number of 

elements along each edge is incrementally increased, and the complexity of the model is recorded 

against the response. The response of interest is the maximum vertical deflection, and the solution 

time is also recorded. A data of mesh size versus deviation and solution time is generated, and the 

maximum vertical deviation is plotted against the number of elements in the model. At some point, 

the system response converges to a solution.  

In the case of the mesh convergence test at hand, six different mesh sizes were utilized, with 

the number of elements ranging from 9 to 1000. The largest mesh had only 9 elements, while the 

smallest had 1000 elements (Figure 7). The other mesh sizes used were 25, 50, 70, and 450 

elements as presented in Table 2. Through a comparison of the results obtained from each mesh 

size, the optimal mesh size for the simulation can be determined. In the "Mesh Convergence 

Check" section, a sensitivity analysis is required to achieve the optimal mesh. If a very fine mesh 

is selected, the program execution time will be significantly long and time-consuming. On the 

other hand, if a much larger element is used, the results will deviate from reality. Therefore, to 

ensure the suitability of the meshing and the size of the elements, the mesh convergence analysis 

stage was performed, and its results are presented in the Table 2. 
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Figure 7. The smallest mesh size for finite element modelling with 1000 elements. 

 
Table 2. The convergency test of types of meshing in finite element analysis. 

 

FEM-based Programming for seepage analysis 
The input random variable for MCS is the conductivity coefficient of the soil along with the 

deterministic input variables, and the random output variable is seepage flow through the dam. 

The soil conductivity variable, as a stochastic variable, has a mean and a standard deviation (SD). 

MCS has been performed with 2000 iterations, and in contrast to the deterministic analysis, a 

number of iteration SED values have been obtained, which requires the use of a PDF to display 

these results. The paper is modeled in three phases: geometry, reservoir water and downstream 

water levels, and soil permeability. Each of the models has been implemented in the FORTRAN 

program, and finally, deterministic and probabilistic results were compared. 

As discussed in Hydro-Mechanical problems, the free surface flow problem includes an upper 

boundary, and the position of this boundary is not known beforehand (the first flow line or 

percolation front), so an iterative process will be necessary to find such a boundary. In fact, the 

unknown position of one of the boundaries of the solution domain causes the problem to become 

nonlinear. For example, a fixed finite element mesh can be used, and the nodes can be divided into 

two regions of active and inactive nodes, depending on whether the fluid is present in that node or 

not. The other method is the method used in the present program, in such a way that the meshing 

of the finite elements takes place in time steps, and finally, the upper surface of the meshing 

coincides with the free surface of the flow. 

In the deterministic model, the analysis starts with the assumption of a known initial position 

for the free surface, and the solution of the Laplace equation determines the values of the total 

water charge in the nodes located along the free surface of the flow, which in the general condition 

are not the same as the level of the upper surface of the mesh of finite elements. Therefore, the 

level of the nodes located in the boundary of the upper surface is compared with the values of the 

hydraulic head calculated in this step, and in other words, the nodal coordinates of the points 

located on the upper boundary of the free surface are corrected and with the total hydraulic head 

obtained by solving the equation Laplace is set equal. In order to avoid distorted elements, the 

Geom_Freesurf subroutine is used, ensuring that the nodes beneath the top surface are evenly 

distributed. This geometric subroutine is created to help to solve the seepage problem with a free 

No. of meshing No.1 No.2 No.3 No.4 No.5 No.6 No.7 

Number of all Nodes 40 96 181 245 1281 1911 3131 

Number of Elements 9 25 50 70 200 450 1000 

Time of solving (t/t1000) 0.05 0.16 0.22 0.31 0.52 0.69 1 

EDM (Deterministic) 7.85 6.12 5.02 4.81 4.83 4.83 4.83 

EDM (Stochastic) 10.22 8.75 6.75 5.25 5.17 5.16 5.16 

Type Element 4-node quadrilateral element 
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surface, an initial domain of trapezoidal meshing, and counting the nodes and elements along the 

x-axis. Then the analysis, solving the Laplace equation, is repeated for the new mesh. 

Since the coordinates of many nodal points in the mesh of finite elements change, the matrix 

of coefficients of all the elements must be recomputed and assembled into the global system. In 

order to avoid numerical integration in determining the values of the matrix coefficients of each 

element, an analytical-computational method is used by subroutine seep4. Library subroutine 

Seep4 calculated the conductivity matrices kc for the element “analytically”. In general, the 

assembly is made into a global conductivity matrix kv stored as a skyline. 

In this program, the subroutine for generating the mesh and nodal coordinates of the domain 

has not been solved, therefore, in the input file, the coordinates of each nodal point Coord_g and 

also the pattern of connecting the nodal points in each element Num_g should be introduced. In 

addition, some of the variables that previously had a fixed value in this program must be 

introduced as input variables in order to specify the geometry of the desired solution domain in 

the input file. 

To solve problems of partial differential equations such as seepage and with the Deterministic 

Finite Element Method (DFEM), only average input data obtained from previous experimental 

results are considered, and the output variable is a single and unique data. In this output mode, it 

is not able to accurately explain the uncertainties caused by the random input variables [38, 39]. 

One of the main effective factors in the accuracy of the results in probabilistic methods based 

on the Monte Carlo method is the number of simulation iterations, which is selected based on the 

moving average of the results of the analyzes and for a certain level of acceptable error. In all 

analyzes of the present research, the number of iterations is 2000. 

The main model for simulation is an earth dam with the geometry of Figure 8 and sand clay 

(SC) for the material. In the finite element mesh of the research, all the models have quadrilateral 

elements; for the upstream boundary, fixed nodal potential points equal to the height of the 

reservoir surface were used, and the downstream water level was considered proportional to the 

water height with fixed nodes. The boundary between the foundation and the dam is assumed to 

be zero discharge flow. 

 

 
Figure 8. View of the Earth dam studying for boundary conditions in the present numerical 

model. 
 

 

3. RESULTS AND DISCUSSION 

Deterministic model 
First, the program written in Fortran language is executed on the assumption that the 

permeability values of the materials are constant, and the results are expressed as two input and 

output leakage currents (in this case, these two values are equivalent). The result of the 

deterministic analysis shows that in the homogenous body where the vertical and horizontal 
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permeability is equal, the slope of the line is higher than in the two non-homogeneous models, and 

also, the effect of the horizontal component of permeability (Kx) is greater than its vertical 

component (Ky) on the discharge flow rate. In the deterministic model, two non-isotropic states 

are mentioned. In the first part, the value of the horizontal permeability component (Kx) is constant 

(3.33×10-7 m/s), and the vertical coefficient (Ky) is variable, and also in the second part, the value 

of the vertical permeability component is constant (3.33×10-7 m/s), and the horizontal penetration 

component is variable. With the increase of the downstream-to-upstream water level ratio 

(Hd/Hup), the amount of seepage has decreased. In fact, the seepage reduction is a linear function 

of the changing pattern (Hd/Hup), which is repeated for isotropic and non-isotropic conditions 

(Figure 9). 

 

 
Figure 9. Relationship between ratio of downstream to upstream head (Hd/Hup) and SED 

in deterministic analysis. 
 

Stochastic model 
In the probabilistic model and the MCM, instead of the stability of hydraulic conductivity, its 

average and distribution functions are entered in the calculations. First, the dam was considered 

isotropic (Kx=Ky), and the code was executed in probabilistic mode. The resulting average discharge 

increases almost linearly with the increase of the hydraulic conductivity coefficient. Various Earth 

dams were modelled to investigate the scale effect on seepage, and then the models were entered into 

the probabilistic FORTRAN program. After that Probability distribution function (PDF) and 

Cumulative distribution function (CDF) graphs were extracted for each sub-model considering ratio 

of downstream water level to upstream (Hd/Hu) (Figure 10), the mentioned results in MARS were 

converted into equations for EDM calculation. In fact, Figure 10 presented PDF-CDF of diagrams for 

condition that Hd/Hu (height of downstream to upstream water level) is changing. 
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Hydraulic Conductivity of Soil 
The related to Soil Hydraulic Conductivity (SHC) and in the specific mass of soil, the spatial 

heterogeneity of its layers is caused by the inherent variability of its structure and caused by 

processes such as sedimentation and natural soil weathering over passing years. In deterministic 

SA methods, a constant conservative value is considered for the properties of a single soil layer, 

and it is often assumed that the soil layers are homogeneous [40]. In contrast, probabilistic 

techniques assign wide values to material properties in each iteration instead of constant values.  

 If the values of the hydraulic conductivity coefficient of the dam body (Kx) are variable, the 

results of the running of the seepage code indicated the increase in the ratio of the horizontal 

conductivity to the vertical coefficient (Kx/Ky) soil. The average value of seepage in the range 

between 0.71 and 1 in the descending, again in the range of (1,1.41), is ascending. In fact, the 

linearity of the relationship between the mean seepage and Kx/Ky is not true. Note that according 

to Laplace equation, the assumption of nonlinearity of this relationship is close to reality. The SD 

has decreased with the increase in Kx/Ky ratio. The behaviors of maximum and minimum seepage 

rates are similar to the average flow in the probabilistic model for different values of Kx/Ky. In 

addition, the PDF and CDF have been compared in probabilistic models (Figure 11) and ranges of 

changing Kx/Ky is compared in Table 3. 

 
.y/KxTable 3. Changes in seepage behavior in probabilistic mode for changes K 

Horizontal to vertical 

permeability ratio 

Kx/Ky 

Minimum of 

seepage flow 

×10-7×m3/s 

Maximum of 

seepage flow 

×10-7×m3/ 

Average of 

seepage flow 

×10-7×m3/s 

standard 

deviation 

×10-7 

0.71 6.146 19.19 11.54 1.768 
0.75 6.082 18.91 11.5 1.747 
0.78 6.024 18.65 11.46 1.727 
0.82 5.969 18.39 11.42 1.709 
0.86 5.918 18.15 11.38 1.693 
0.91 5.87 17.91 11.34 1.678 
0.95 5.826 17.69 11.3 1.664 
1.00 5.784 17.46 11.27 1.651 
1.05 6.308 17.96 11.79 1.644 
1.10 6.888 18.47 12.34 1.637 
1.16 7.498 19.01 12.92 1.63 
1.22 8.134 19.57 13.52 1.622 
1.28 8.796 20.17 14.15 1.614 
1.34 9.49 20.79 14.82 1.607 
1.41 10.21 21.44 15.51 1.601 
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Figure 10.  PDF and CDF diagrams for earth dam in change for reservoir and 

downstream water level changing (for Hd/Hu=0.09, 0.14, 0.19, 0.25, 0.32, 0.39, 0.47, 0.56, 

0.67, and 0.79) 
1=0.7y/KxK =0.75y/KxK =0.78y/KxK 
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=0.82  y/KxK =0.86y/KxK =0.91y/KxK 

 
=1.1y/KxK =1.16y/KxK =1.22y/KxK 

 
=1.28  y/KxK =1.34y/KxK =1.41y/KxK 

 
.)y/Kxvertical conductivity ratio (KFigure 11. PDF including changes in horizontal to  

 

After several models of the Earth dam were run in the FORTRAN program, the mean and SD 

of the discharge rate in the deterministic and uncertainty models are obtained. With the aim of 

determining the relationship between the Effective Discharge of MARS method (EDM) rates (the 

Discharge variable is converted to the dimensionless variable called the EDM).  
Kx

Ky
, 

W

B
, 

Bd

B
, 

Bu

B
, 

Hdam

B
, 

Hu

Hdam
, and 

Hd

Hu
 are input parameters that were used for the MARS model. 

 

𝐸𝐷𝑀 =
𝑄𝑚𝑒𝑎𝑛

𝐾𝑚𝑒𝑎𝑛×𝐻𝑑𝑎𝑚
  (22 )  

 

In the above equation, EDM is the dimensionless discharge flow rate and Qmean is the seepage 

flow rate from the body of the earthen dam in terms of cubic meters per second. Note that the 

variable is as average in probabilistic and deterministic analysis converted to Q which would be 

unique value (Not have a distribution function and SD). K is the average permeability coefficient 

body for two vertical axes Ky and horizontal Kx which are in m/s, and also Hdam is the dam height 

(m). 
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) (32 )  
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Table 4 lists the descriptions of the input variables, that Figure 12 show minimum, maximum 

and medium of these parameters. Typically, the minimum crest width is not less than 3 m, even 

for small earth dams. In most large dams, this width is often between 6 and 12 m ranges and 

usually increases with the dam height incensement. The database resulting from the deterministic 

analysis is converted to continue analysis with the Data Driven algorithm. 

 
Table 4. Statistical overview of the 

parameters for using MARS model. 

 

Variable Description 

𝐾𝑥

𝐾𝑦
 

The ratio of horizontal to 

vertical soil permeability 

𝑊

𝐵
 

The ratio of crest width to base 

width 

Bd

B
 

The ratio of the crest distance 

from the downstream toe to base 

width 

𝐻𝑑

𝐻
 

The ratio of the downstream 

water height to dam height 

𝐻𝑢

𝐻
 

The ratio of the reservoir water 

height to dam height 

𝐻𝑑

𝐻𝑢
 

The ratio of the downstream to 

upstream head 

 Figure 12. The range of changes of 6 input variables 

of the deterministic and stochastic models. 

 
At first, The MARS model executes for deterministic data and starts by entering the input and 

output variables in the statistics software, and data is created for the model. In this case, MARS is 

a useful tool for earth dam analysis as it can capture the nonlinear relationships between various 

factors that affect the performance of an earth dam, especially SED analysis. Input variables 

included six items related to geometry, hydraulic conductivity coefficient, and water height 

upstream and downstream. Because the results can be generalized to other research, dimensionless 

variables were used for inputs and outputs. The results of the Mars method for comparing the 

values obtained from Mars and the data observed in the output of the uncertainty Fortran code are 

shown in Figure 13. 
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a 

 
b 

 
Figure 13. Comparison between MARS model with Fortran program results of the a) 

deterministic b) probabilistic analysis. 

 

MARS algorithm for achieving to answer uses Backfitting, which is an iterative algorithm and 

enables MARS to estimate model parameters using all available data, even when some data is 

missing. In a flexible and efficient manner, it is particularly useful in situations where the 

relationship between the input variables and the output variable is complex and nonlinear. In order 

to evaluate the error of the Mars model, the results of modelling by the MARS method to compare 

the residual sum of squares (RSS) observed in the output of the Fortran code are shown in Figure 

14. The values related to the details of the MARS method output along with the GCV error and 

the penalty value are shown in Figure 15. 
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a 

 
b 

 
Figure 14. the frequency of the residual sum of squares (RSS) in the MARS model 

for the a) deterministic b) probabilistic analysis. 

a b 
MARSplines Results: 

Dependent: EDM 

Independents: Kx/Ky, W/B, Bd/B, H/B, Hu/H, Hd/Hu 

Number of terms = 9 

Number of basis functions = 8 

Order of interactions = 1 

Penalty = 2.000000 

Threshold = 0.000500 

GCV error = 0.000119 

Prune = Yes 

MARSplines Results: 

Dependent: EDM 

Independents: Kx/Ky, W/B, Bd/B, H/B, Hu/H, Hd/Hu 

Number of terms = 10 

Number of basis functions = 9 

Order of interactions = 1 

Penalty = 2.000000 

Threshold = 0.000500 

GCV error = 0.000127 

Prune = Yes 

Figure 15. Result of MARS model for the a. deterministic analysis. b. Stochastic analysis 
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In deterministic analysis, the results indicate that if the ratios of Hu/Hdam and Hd/Hu are 0.84 

and 0.19, respectively, and Kx/Ky is doubled, the value of EDM will increase by 7.92%. Similarly, 

if the ratios of Hd/Hu and Hu/Hdam are 0.136 and 0.88, respectively, and Kx/Ky is doubled, the value 

of EDM will increase by 7.6%. Additionally, if the ratio of Hd/Hu is 0.087 and the ratio of Hu/Hdam 

is 0.92, and Kx/Ky is doubled, the EDM will increase by 7.3%. In general, there is a linear 

relationship between the variables of EDM and Kx/Ky. Assuming a constant geometry of the dam 

and isotropic earth dam (Kx=Ky), with an R2=0.95, deterministic analysis revealed that a 17.9% 

increase in the Hd/Hu ratio leads to a significant 29.3% decrease in EDM. This result highlights 

the importance of accurate estimation of the Hd/Hu ratio in minimizing the EDM. 

The probabilistic analysis revealed a different outcome. In the case of an isotropic earth dam 

(Kx=Ky), with a 17.9% increase in the Hd/Hu ratio, the EDM decreased by 19.02%. If assumptions 

are considered include; Hd/Hu = 0.083, Hu/Hdam = 1, Hdam/B = 0.25, and W/B = 0.167, then with a 

31% increase in Bd/B, the EDM discharge will decrease by 13.12%. The Bd/B and EDM have an 

inverse relationship with another. 

In the case of probabilities, the results of the research show that if the ratios of Hu/Hdam and 

Hd/Hu are 0.19 and 0.84, respectively, and Kx/Ky is doubled, the value of EDM will increase by 

23.7%. Similarly, if the ratios of Hd/Hu and Hu/Hdam are 0.136 and 0.88, respectively, and Kx/Ky is 

doubled, the value of EDM will increase by 21.46%. Additionally, if the ratio of Hd/Hu is 0.087 

and the ratio of Hu/Hdam is 0.92, and Kx/Ky is doubled, the EDM will increase by 19.56%. In 

general, a linear relationship between the variables of EDM and Kx/Ky is established in a 

probabilistic analysis. 

 

Comparison of deterministic and probabilistic models 
In order to compare deterministic and probabilistic modeling, Table 5 shows the values of 

errors and fitness. As can be seen, the R-squared (R2) is 0.93, the Root Mean Square Error (RMSE) 

is 0.012 in the deterministic model, and the values of 0.951 and 0.0138 for the above two values, 

respectively, in the probabilistic model that show the appropriateness of the model in both. The 

coefficient of determination for the probabilistic model is better than the deterministic model, but 

on the contrary, in the RMSE, MAE, MSE, and fitness indexes, the values obtained for the 

deterministic model are more suitable than the probabilistic. In general, according to the above 

parameters, the deterministic model shows closer proximity to the target model of the FORTRAN 

code. The deterministic GCV error of 1.19×10-4 and the stochastic GCV error of 1.27×10-4 suggest 

that the deterministic model has a slightly lower prediction error than the stochastic model. 

In general, the statistical comparison of this research indicated that MARS could strongly 

predict the complex relationships between the input and output variables of the seepage problem. 

In addition, it was able to understand the interaction between input variables during analysis, 

which is a useful tool for monitoring calculations. 
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Table 5. Statistical indices for comparing deterministic and probabilistic models. 

Parameter Deterministic Stochastic 

R-square 0.931 0. 951 

Adjusted R-square 0.930 0.951 

*Se 0.00929 0.00954 

GCV error 0.000119 0.000127 

𝜌 0.9642 0.9753 

RMSE 0.0351 0.0429 

RRMSE 0.201 0.301 

MAE 0.0097 0.0108 

MSE 0.00123 0.00184 

RSE 0.0555 0.0758 

 

4. CONCLUSIONS 
The study focuses on solving the Laplace equation numerically using the RFEM and 

incorporating uncertainty components as inputs. The aim is to investigate the impact of uncertainty 

on estimating seepage flow by employing a hybrid algorithm that combines the RFEM and MARS. 

In general, the manuscript proceeds in three phases, that in first phase, the FEM was employed 

under the assumption of deterministic Soil Hydraulic Conductivity (SHC). In the second phase, 

stochastic analysis was conducted by assuming mean and standard deviation values for SHC. 

Finally, in the third phase, both deterministic and probabilistic analyses were employed to obtain 

the EDM with the assistance of the MARS method. In general, it can be concluded about the 

results of the manuscript that: 
i. The study examines the relationship between six dimensionless variables (Kx/Ky, W/B, Bd/B, 

Bu/B, Hdam/B, Hu/Hdam, and Hd/Hu) and the EDM. Uncertainty analysis was performed 

using the MCM, which offers optimal performance and speed compared to other methods, 

however avoiding high computational costs. 

ii. Comparing the models based on statistical parameters (R-square, Adjusted R-square, Se, σ, 

GCV error, RMSE, RRMSE, MAE, MSE, and RSE) reveals that both models exhibit 

suitable accuracy, although the deterministic model has a lower percentage of errors. 

iii. The comparison of GCV error between the deterministic and probabilistic results using 

MARS indicates that the deterministic model slightly outperforms the probabilistic model 

in terms of prediction error for SED. It was found that the deterministic model had a 

slightly lower estimate error than the stochastic model, with a GCV error of 1.19x10-4 and 

1.27x10-4, for deterministic and stochastic, respectively. 

iv. The evaluation results of the MARS method with the Fortran probability code show that both 

models have an acceptable performance in predicting dam seepage flow and can be used 

for future research in the field of Fluid-Structure Interaction (FSI) or Soil-Structure 

Interaction (SSI) in earth dams. 
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The list of symbols and notations used in this paper 

Symbol Description Symbol Description 

H Height of dam (m) k Soil permeability (m/s). 

Hd Downstream water level (m) φ 
Function for SED potential or 

piezometer head (m). 

Hu Reservoir water level (m) q seepage flow rate (m3/s). 

Kx 
Horizontal hydraulic conductivity 

(m/s) 
{q} SED or inverse SED vector 

Ky 
Vertical hydraulic conductivity 

(m/s) 
{φ} 

Piezometer head vector for 

nodes. 

[T] 
Transferred [B] matrix in solid FEM 

problems 
[Kc] The coefficients matrix. 

x The vector of predictor variables. Wi The weight function 

β0 Intercept term. Ni shape function 

βj 
The coefficients for the basic 

functions Bj(x). 
WS 

The weight of the smoothness 

penalty. 

M The total number of basic functions. Q The Normalized SED (m3/s) 

t Knot point in MARS method fX(x) 
probability mass function or 

probability density function (PDF), 

R2 Coefficient of Determination E(g(X)) Monte Carlo estimator 

MAE Mean Absolute Error fmi 
The sample value obtained 

from the numerical analysis 

RSE Relative Standard Error gmi 
Sample value obtained by 

using MARS 

RMSE Root Mean Square Error n Total number of samples 

RRMSE Relative Root Mean Square Error 𝐹𝑚𝑖
̅̅ ̅̅ ̅ 

Average value of the obtained 

from the numerical analysis in 

Fortran 

EDM 
Effective Discharge of MARS 

method 
𝑔𝑚𝑖̅̅ ̅̅ ̅ 

Average value of the sample 

obtained from MARS. 

Qmean 
The seepage flow rate from the body 

of the earth dam(m3/s). 
Kmean 

The average permeability 

coefficient body for two 

vertical axes Ky and horizontal 

Kx. (m/s). 

W Crest width of earth dam. GCV 
a penalty coefficient for 

validation 

B Bottom width of the earth dam G(Xi) 
The LAS algorithm yields the 

local average value 

Bd 
The horizontal distance of the dam toe 

from the downstream side to the crest. 
Gi, gi 

Local average of a standard 

Gaussian random of field over the 

domain of the ith unit 

Bu 

The horizontal distance of the dam 

heel from the upstream side to the 

crest 

G(𝑥̃) Correlated function for GRF 

ki 
The allocated conductivity of ith 

element 
Gi(x̃) 

Normally distributed random field 

(with zero mean and unit 

variance). 

geom_freesurf 
This subroutine refers to element nodal 

coordinates and node numbers num for a 

2D free surface analysis. 
Seep4 

This subroutine returns the “analytical” 

conductivity matrix of a 4-node plane 

element by using 4 Gauss points. 

Coord_g 
This subroutine returns to pattern of 

connecting the nodal points 
Num_g 

Node Numbering based 

subroutine in Fortran code 

β The reliability index kv Global conductivity matrix 
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