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Abstract 
This research addresses the essential need for assessing and managing water quality in 

reservoirs, which play a pivotal role in various socioeconomic aspects. To achieve this, a 

stepwise automatic calibration approach is proposed, specifically targeting the CE-QUAL-W2 

model. This two-dimensional hydrodynamic and water quality model is widely employed in 

studies worldwide. Calibration, a fundamental aspect of model development, is complex and 

traditionally relies on manual, trial-and-error methods, which can be time-consuming and require 

substantial expertise. In this study, an alternative approach is introduced, incorporating the 

JAYA optimization algorithm, which reduces the complexity associated with fine-tuning 

optimization parameters. Furthermore, a clustering framework is adopted, grouping related 

variables for independent calibration. The research is conducted on the Dez reservoir in 

southwest Iran, using a two-step calibration process. The first step focuses on hydrodynamics, 

while the second step addresses water quality variables, including phosphate, ammonium, 

nitrate, and dissolved oxygen. The proposed methodology applied to Dez reservoir and tested 

against the observed data, where it demonstrates promising results. 
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1. Introduction  
Reservoirs are complex systems that serve multiple purposes, including water supply, power 

generation, and flood control [1, 2]. However, the rapid growth of industry and population has 

resulted in the introduction of various pollutants to water bodies, leading to the degradation of 

more than 30% of the world's aquatic biodiversity [3]. Reservoirs are particularly vulnerable to 

contamination, as they receive wastewater discharges and river floods from upstream areas, 

making them potential sinks for pollutants. Moreover, climate change which affects the inflow to 

 
1  Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz, Iran. 

(Corresponding author) 
2 Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz, Iran. 



M. Azizipour, M. Gholami, S. M. Ashrafi 

 

 
AUTUMN 2023, Vol 9, No 3, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                  

2 

the reservoir, may exacerbate the water quality [4]. Therefore, it is crucial to evaluate the water 

quality and hydrodynamics of reservoirs, which tend to be more stable than rivers [5], to support 

socioeconomic development [6] and effective water resource management. 

Over the past two decades, the integration of monitoring programs and water quality 

modeling has provided effective tools for managing water quality in impounding reservoirs [7]. 

Various models have been employed for simulating water quality in reservoirs, such as one-

dimensional models (e.g., WQRRS [8]), two-dimensional models (e.g., CE_QUAL-W2), and 

three-dimensional models (Water Quality Analysis Simulation Program (WASP) [9]).  In this 

study, we employed a 2D (longitudinal-vertical) hydrodynamic and water quality model, which 

was previously known as LARM (laterally averaged reservoir model) and is currently referred to 

as CE-QUAL-W2 [10], which developed by the U.S. Army Corps of Engineers and has been 

widely used in studies across the globe [11]. 

In CE-QUAL-W2, like any mathematical simulation model, a fundamental and critical aspect 

of developing a reliable model that can consistently replicate natural processes involves 

appropriately its parameterization. Some of these parameters cannot be directly measured and 

are associated with collective phenomena and needs to be, therefore, calibrated. However, the 

process of calibrating the unknown parameters of the model is complex and not straightforward.  

Traditionally, calibration is done through a trial-and-error approach, where the parameters of the 

model are manually adjusted until the desired accuracy is achieved. The modelers select the most 

suitable parameters based on their expert knowledge, the goodness-of-fit measures associated 

with each parameter set, and subjective judgment [e.g., 12, 13]. Manual calibration offers the 

benefit of utilizing expert knowledge and comprehension of physical and biological processes, 

which is crucial for achieving a reasonable solution [14]. However, this method can be time-

consuming and may not always result in the optimal choices for the parameters. Additionally, it 

requires a significant amount of experience and expertise from the user. 

An alternative method for parameter determination in numerical models is the use of 

automatic calibration techniques, which rely on advanced optimization algorithms to determine 

the optimal parameter values. Incorporating automatic optimization techniques can provide a 

means of simultaneously calibrating multiple model parameters while accounting for the 

interdependencies between them and their impact on the overall goodness-of-fit. Such methods 

can streamline the parameterization process, allowing for the identification of the most suitable 

parameter values and minimizing the time and effort required for calibration. Additionally, these 

methods can help improve model accuracy and reliability, leading to better predictions and more 

informed decision-making in various scientific fields. 

The automatic calibration approach has been widely adopted in water quality modeling, 

facilitating the parameter determination of complex models and improving their predictive 

capabilities. Der Yang et al (2000) [15] created a nonlinear calibration model that utilized the 

least squares method to estimate the biological parameters of algae, aiming at minimize the 

average difference between the observed data, derived from satellite images, and the simulated 

data. In a calibration setting, the genetic algorithm (GA) was employed as a tool for parameter 

optimization in water quality models [16]. [17] linked the QUAL2E model with a GA to 

calibrate and verify the model's efficacy for different observation of river water quality data. In 

order to calibrate the hydrodynamic and water quality model CE-QUAL-W2, Ostfeld and 

Salomons (2005) [18] utilized a hybrid algorithm that combined the genetic algorithm (GA) and 

k-nearest neighbor approach. This approach achieved excellent results in less time than using 

only the GA. Afshar et al. [19] used a particle swarm optimization (PSO) algorithm to 

automatically calibrate the CE-QUAL-W2 model. In a similar vein, Afshar et al. (2013) [20] 
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proposed a multi-objective particle swarm optimization (MOPSO) model for automatic 

calibration of CEQUAL-W2 to predict physical, chemical, and biological behaviors of a water 

body. The authors concluded that the proposed approach may provide a wide version of all 

possible calibration solutions for better decision making to select the best solution from the 

Pareto front. 

Recently, [21] introduced new automated calibration framework for three-dimensional lake 

hydrodynamic models, which reduces the calibration time and provides a more accessible option 

for a wide range of users. The framework has been tested on two different lakes, and the models 

showed a 50% reduction in mean absolute errors over the baseline. [22] described the use of the 

Sequential Uncertainty Fitting algorithm to automatically calibrate CE-QUAL-W2 model. The 

results showed that the developed method has high potential for matching the simulated 

temperature and water surface elevation with the measured data and that SUFI-2 algorithm had a 

better convergence rate compared to particle swarm optimization (PSO) algorithm. A new 

Repetitive parameterization and optimization (Rep-OPT) strategy was proposed by [23], which 

uses multiple optimization steps with expert knowledge to identify the right calibration 

parameters, resulting in excellent model fit. [24] investigated the use of Bayesian calibration to 

aid in the characterization of faulty model setups and calibration parameter combinations for 

complex hydrodynamic flow patterns in reservoirs and lakes. The study used a Gaussian process 

emulator to considerably speed up the calibration process and demonstrates that Bayesian 

calibration can describe the quality of calibration and correctness of model assumptions through 

geometric characteristics of posterior distributions.  

Most of the previous studies have employed evolutionary optimization algorithms for the 

automatic calibration of hydrodynamic and water quality models. While these studies achieved 

positive outcomes, the utilization of such optimization algorithms can be troublesome due to the 

presence of fine-tuning parameters inherent in evolutionary algorithms. These algorithms 

involve multiple fine-tuning parameters, including population size, mutation rate, and crossover 

rate, which significantly impact their performance. Determining the optimal values for these 

parameters is challenging and requires considerable time and effort. It should be noted that no 

universally optimal parameter values exist for all optimization problems, as different problems 

may necessitate varying parameter settings. A common approach to address this issue involves a 

trial-and-error process, where the optimization algorithm is executed with different parameter 

configurations until the best-performing parameters are identified. However, this approach may 

not always yield the most favorable outcomes and is computationally demanding especially in 

automatic calibration water quality models in which large-scale simulation models are included.  

Furthermore, most of the prior studies employed a single-step automatic calibration approach 

where all variables within the model were determined through solving a single optimization 

problem. However, the simultaneous calibration of water surface elevation, hydrodynamic 

model, and water quality variables expands the search space of the optimization problem, posing 

challenges in finding an optimal solution. As an alternative, a clustering approach can be 

adopted, grouping highly related variables together, allowing for the determination of optimal 

parameter values for each cluster independently. 

The purpose of this study is to overcome the shortcomings of existing approaches by 

developing and presenting an effective and trustworthy method for calibrating the widely used 

CE-QUAL-W2 water quality simulation model. This is accomplished by using the JAYA 

optimization algorithm, which does away with the requirement for fine-tuning optimization 

process parameters. A subset of variables is identified at each phase of the calibration process, 

thus narrowing the search space and cutting down on the number of iterations needed. The 
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identification of the thermal modeling parameters is the first step in the calibration process. Next 

comes the identification of the water quality variables. The online integration of the simulation 

and optimization models facilitates transfer data between them. 

 

2.1. Case Study 
The Dez reservoir, situated in the Zagros Mountains of southwest Iran (between 31°35′51″–

34°7′46″ N and 48°9′15″–50°18′37″ E), was formed in 1963 by the construction of the Dez dam, 

towering at a height of 203 meters. Initially, the reservoir volume stood at approximately 3300 

million cubic meters (MCM), but sedimentation has gradually reduced it to 2600 MCM over its 

60-year operational period. The reservoir spans a length of 65 kilometers and operates within a 

water level range of 300 m to 352 m above sea level. Dez dam station records an average annual 

rainfall of 474 millimeters, with peak rainfall occurring in January and February and the lowest 

amounts in July and September. The reservoir primarily serves the purposes of drinking water 

supply, agricultural demand, and hydropower generation. Refer to Figure 1 for the geographical 

location of the Dez dam Basin along with the streams within the basin and measurement stations. 

Water quality variables such as temperature, total dissolved solids (TDS), phosphate 

concentration, ammonium concentration, and nitrate concentration were measured in-situ at 

these stations and various depths across different seasons throughout the year. Figure 1 shows 

the location of the dam and its reservoir.  

 

  
Figure 1. Location of Dez dam in the region 

 

2.2. Stepwise Automatic Calibration  
This study introduces a methodological advancement in the calibration of the CE-QUAL-W2 

model, employing a systematic stepwise approach. The proposed calibration strategy leverages a 

clustering framework, wherein closely interrelated variables are grouped together, and the 

optimal parameter values for each cluster are ascertained independently. In the initial phase, a 

selection of pertinent water quality variables is undertaken. This investigation seeks to model 

various variables, namely temperature, total dissolved solids (TDS), phosphate (PO4), 

ammonium (NH4), nitrate (NO3), and dissolved oxygen (DO). Subsequently, these variables are 

partitioned into distinct clusters, with a specific emphasis on variables exhibiting physical 

interdependencies. In this particular study, we delineate two distinct clusters for analysis as  
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𝑍1 ={Temperature, TDS} 

 

and 

 

𝑍2 ={PO4, NH4,  NO3, DO} 

   

The present challenge entails a two-step automatic calibration process. In the initial step, the 

calibration procedure focuses on variables within the set Z1, while in the subsequent step, the 

calibration is directed towards variables belonging to the set Z2. 

Based on an extensive review of the literature, the foremost parameters exerting significant 

influence on the temperature and total dissolved solids (TDS) profiles of the reservoir were 

meticulously identified and subsequently designated as decision variables within the 

optimization framework. In the initial phase of the calibration process, the following parameters 

were considered for calibration: wind sheltering coefficient (WSC), evaporation coefficients 

(AFW, BFW, CFW), floor heat exchange coefficient (CBHE), substrate sedimentation 

temperature (TSED), extinction coefficient for pure water (EXH2O), extinction due to inorganic 

suspended solids (EXSS), extinction due to organic suspended solids (EXOM), and solar 

radiation absorbed at the water surface (BETA). These parameters represent the focal points of 

our calibration efforts in the first step. 

In the subsequent step of the calibration process, the following parameters were identified as 

the decision variables for optimization: floor heat exchange coefficient (CBHE), evaporation 

coefficients (AFW, BFW, CFW), substrate sedimentation temperature (TSED), sediment release 

rate of phosphorus (PO4R), sediment release rate of ammonium (NH4R), ammonium decay rate 

(NH4DK), nitrate decay rate (NO3DK), denitrification rate from sediments (NO3S), fraction of 

first-order sediment concentration (FSEDK), and the fraction of the zero-order sediment oxygen 

demand (FSOD). These variables constitute the focal elements of the optimization problem in 

the subsequent calibration step. 

The flowchart depicting the proposed stepwise automatic calibration process is presented in 

Figure 2. The simulation module within this algorithm employs the CE-QUAL-W2 model, while 

the optimization component leverages the JAYA optimization algorithm to fulfill its objectives. 

 

3.1. Simulation Model 
CE-QUAL-W2 is a sophisticated two-dimensional longitudinal/vertical hydrodynamic and 

water quality model developed by the United States Environmental Protection Agency (EPA). 

Its initial iteration, known as LARM, was first applied in 1975 to model a branchless reservoir. 

Over time, CE-QUAL-W2 has undergone multiple iterations, incorporating enhancements and 

corrections to accommodate a wide range of aquatic systems, including reservoirs, lakes, 

estuaries, and rivers. 

This comprehensive model is proficient in simulating various facets of water bodies, 

encompassing hydrodynamics, temperature dynamics, and a multitude of water quality 

parameters. These water quality parameters include, but are not limited to, inorganic suspended 

solids, phytoplanktons, ammonia, phosphorus, nitrate, stable and unstable dissolved organic 

matter, and dissolved gases. 

CE-QUAL-W2's core computational framework is grounded in a finite-difference 

approximation method applied to the equations governing fluid motion in laterally averaged 

form. These equations comprise the free surface wave equation, momentum equations in both 

the z and x directions, the equation governing continuity of component transfer, and the equation 
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of state. Consequently, the model offers the capability to compute critical variables such as free 

surface elevation, pressure, density, vertical and horizontal velocities, as well as concentrations 

of various constituents, as detailed in [10]. 

The model's robustness hinges on the integration of multiple data sources, including 

geometric data, meteorological data, boundary conditions, initial conditions, inlet and outlet flow 

information, hydraulic parameters, and calibration data which intended to be optimally 

determined in this study.  

 

3.2. Jaya Optimization Algorithm 
The Jaya optimization algorithm is a meta-heuristic technique, introduced by Rao [25], 

specifically designed for solving both constrained and unconstrained continuous optimization 

problems. Similar to other meta-heuristic approaches, the Jaya algorithm iteratively explores the 

problem space, commencing with a randomly initialized population, with the goal of locating the 

optimal solution. In this context, let F(x) represent the objective function of the problem, and the 

Jaya algorithm seeks to either minimize or maximize this function. 

At each iteration 'i', the algorithm considers 'm' decision variables (j=1,2,3...m) and 'n' 

candidate solutions. The algorithm identifies the best value among all candidate solutions for the 

objective function F(x) as 𝑋𝑗 𝑏𝑒𝑠𝑡 𝑖 , and the worst value as 𝑋𝑗 𝑤𝑜𝑟𝑠𝑡 𝑖. If, during iteration 'i', 

candidate variable 𝑋𝑗 𝑘 𝑖 is chosen for decision variable 'j', the algorithm modifies and updates 

this decision variable using the following equation: 

 

𝑋𝑖, 𝑘, 𝑖
𝑛𝑒𝑤 = 𝑋𝑗, 𝑘, 𝑖 + 𝑟1, 𝑗, 𝑖(𝑋𝑗 ,𝑏𝑒𝑠𝑡 ,𝑖 − |𝑋𝑗,𝑘, 𝑖|) − 𝑟2, 𝑗,𝑖(𝑋𝑗 ,𝑤𝑜𝑟𝑠𝑡 ,𝑖 − |𝑋𝑗,𝑘, 𝑖|)   (1) 

 

Here, 𝑋𝑗,𝑏𝑒𝑠𝑡, 𝑖  represents the value of variable 'j' for the best candidate, and  𝑋𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖  

represents the value of variable 'j' for the worst candidate.  𝑋𝑖, 𝑘, 𝑖
𝑛𝑒𝑤  signifies the updated value of 

𝑋𝑗, 𝑘, 𝑖, and 𝑟1, 𝑗, 𝑖 and 𝑟2, 𝑗, 𝑖 are two random numbers for variable 'j' during iteration 'i', each 

within the range [0,1]. The term  𝑟1, 𝑗, 𝑖(𝑋𝑗 ,𝑏𝑒𝑠𝑡 ,𝑖 − |𝑋𝑗,𝑘, 𝑖|) indicates a tendency to move closer 

to the best solution, while the term 𝑟2, 𝑗, 𝑖(𝑋𝑗 ,𝑤𝑜𝑟𝑠𝑡 ,𝑖 − |𝑋𝑗,𝑘, 𝑖|) indicates a tendency to avoid the 

worst solution. The updated value  𝑋𝑖, 𝑘, 𝑖
𝑛𝑒𝑤  is accepted if it yields a superior solution. All accepted 

solutions are retained at the end of the iteration, and these values serve as inputs for the 

subsequent iteration. 
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Figure 2. Flowchart of the proposed algorithm for stepwise automatic calibration  

 

The objective function in this research is defined to assess the collective error, quantifying 

the fitness between the observed field data and the model-generated results for either 

temperature or water quality variables. To facilitate the aggregation of diverse errors originating 

from various variables within the formulation of the comprehensive error function, it is 

imperative to normalize these errors, ensuring they share uniform orders of magnitude. 

Mathematically, this objective function is expressed as follows:  

 

𝑂𝐹 = (∑ ∑ ∑ (
𝐶𝑗,𝑡,𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑗,𝑡,𝑖
𝑜𝑏𝑠

𝐶𝑗
)

2𝑁

𝑖=1

𝑇

𝑡=1

𝑀

𝑗=1

) (2) 

 

Where 𝐶𝑗,𝑡,𝑖
𝑚𝑜𝑑𝑒𝑙 and 𝐶𝑗,𝑡,𝑖

𝑜𝑏𝑠 are the water quality variables obtained from the model and field 

data, respectively. Also, i, t, and j denote the number of observed data in a station, the period of 

measuring data and all water quality variables, respectively.  
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4. Results and Discussion  
CE-QUAL-W2 was utilized for investigating of thermal stratification and water quality 

variation in Dez reservoir. The model was calibrated using the proposed stepwise automatic 

calibration method. Considering the water quality variables in this study, two steps were 

determined. In the first step, the hydrodynamic simulation of the reservoir was performed in 

which the temperature variation and TDS concertation profiles determined and their affecting 

parameters were calibrated. To this end, the total number of iterations in Jaya optimization 

algorithm was set to 200 with the population size of 6. The resulting parameter values following 

calibration are presented in Table 1, while Figure 3 illustrates the convergence curve of the 

optimization algorithm, depicting the progression of the calibration process. 

 
Figure 3. convergence curve of JAYA optimization algorithm in the first step of automatic 

calibration. 

 

  Table 1. calibrated values in the first step of automatic calibration. 

Coefficient FORTRAN name Range 
Calibrated 

value 

Wind sheltering coefficient for each segment of 

first and last day of calibration 
(WSC) 0.7-1 1 

Coefficient of bottom heat exchange (CBHE) 0.3-1 0.31 

Sediment temperature (TSED) 9-15 15 

A coefficient in the wind speed formulation (AFW) 8-15 11.15 

B coefficient in the wind speed formulation (BFW) 0.3-0.9 0.89 

C coefficient in the wind speed formulation (CFW) 1-3 1.85 

Light extinction coefficient for pure water (EXH2O) 0.28-0.6 0.25 

Extinction coefficient for inorganic solids (EXINOR) 0.01-0.1 0.02 

Extinction coefficient for organic solids (EXORG) 0.01-0.9 0.4 

Fraction of incident solar radiation absorbed at 

water surface 
(BETA) 0.3-0.7 0.6 

 

Figure 4 displays the monthly vertical temperature variations in the Dez reservoir. The 

temperature profiles corresponding to fall, winter, spring, and summer are exemplified by the 

temperature variations in November, February, May, and August, respectively. The figure 

further contrasts the outcomes of the simulation model with the observed data, thereby 

substantiating the precision and efficacy of the proposed algorithm. Evidently, the graphical 

representation indicates the development of thermal stratification during the spring and summer 

seasons. This observation underscores the accuracy and validity of the model's representation of 

the Dez reservoir's thermal behavior. 
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Figure 5 provides a representation of the TDS (Total Dissolved Solids) variation in the 

reservoir over the course of the simulation year. Notably, the figure reveals a satisfactory 

correlation between the results generated by the simulation model and the data obtained from 

experimental measurements. This alignment between the model and experimental data indicates 

a favorable level of agreement and supports the credibility of the simulation model's 

representation of TDS dynamics within the reservoir. 

 

    
Figure 4. Temperature profiles compared to simulation model in Dez reservoir  

 

    
Figure 5. TDS profiles compared to simulation model in Dez reservoir  

 

The second step of the automatic calibration process focuses on characterizing the variation 

of water quality variables, specifically PO4, NH4, NO3, and DO. It's noteworthy that the 

population size employed in the JAYA optimization algorithm remains consistent with the 

previous step. However, for this phase, the maximum number of iterations was extended to 250 

to facilitate more thorough optimization. The convergence curve of the optimization algorithm is 

graphically depicted in Figure 6, providing insight into the progression of the calibration 

process. 
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Figure 6. Convergence curve of JAYA optimization algorithm in the second step of automatic 

calibration. 

 

The simulation model results, depicting the variations in phosphate, ammonium, nitrate, and 

dissolved oxygen (DO) across different depths within the reservoir, are showcased in Figures 7 

to 10, respectively. These figures also feature a side-by-side comparison with the observed data. 

As evident in the figures, the simulation model effectively aligns with the observed data for 

phosphate, ammonium, and nitrate. However, a slight variance is noticeable between the 

measured DO data and the values generated by the simulation model. This variance may be 

attributed to factors such as the precision of the DO measurement experiments or potential 

limitations within the simulation model. 

It's important to note that while the proposed simulation-optimization process did converge to 

a solution, as evidenced by Figure 6, the model's inability to attain a more precise match with the 

observed DO data suggests that further refinements may be needed to enhance the model's 

accuracy in representing DO dynamics within the reservoir. 

 

    
 

Figure 7. Phosphate profiles compared to simulation model in Dez reservoir 
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Figure 8. Ammonium profiles compared to simulation model in Dez reservoir 

 

    
Figure 9. Nitrate profiles compared to simulation model in Dez reservoir 

 

    
Figure 10. DO profiles compared to simulation model in Dez reservoir 

 

5. Conclusion 
This study presents a systematic and effective approach to calibrating the CE-QUAL-W2 

water quality model, offering a solution to challenges associated with traditional manual 

calibration methods. Leveraging the JAYA optimization algorithm and a clustering framework, 

the proposed stepwise calibration process significantly reduces the complexity and time required 

for parameter determination. In the case study of the Dez reservoir, the calibration process 

successfully reproduces temperature and total dissolved solids (TDS) profiles, demonstrating the 

model's capacity to represent thermal stratification. Additionally, the study aligns well with 

observed data for phosphate, ammonium, and nitrate, albeit a slight variance in dissolved oxygen 

(DO) representation. The stepwise automatic calibration approach not only improves the 

accuracy of water quality modeling but also minimizes the effort and expertise required for 

calibration. While it has demonstrated its potential, further refinements may enhance the model's 

accuracy in representing DO dynamics within the reservoir. This research contributes to the 

advancement of water quality modeling, aiding in the effective management of vital water 

resources. 
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