Sedimentation due to gravitation is applied widely in water and wastewater treatment processes to remove suspended solids. This study outlines the effect of the inlet and baffle position on the removal efficiency of sedimentation tanks. Experiments were carried out based on the central composite design (CCD) methodology. Computational fluid dynamics (CFD) is used extensively to model and analyze complex issues related to hydraulic design, planning studies for future generating stations, civil maintenance, and supply efficiency. In this study, the effect of different conditions of inlet elevation, baffle’s distance from the inlet, and baffle height were investigated. Analysis of the obtained data with a CCD approach illustrated that the reduced quadratic model can predict the suspended solids removal with a coefficient of determination of R2 = 0.77. The results showed that the inappropriate position of the inlet and the baffle can have a negative effect on the efficiency of the sedimentation tank. The optimal values of inlet elevation, baffle distance, and baffle height were 0.87 m, 0.77 m, and 0.56 m respectively with 80.6% removal efficiency.
Shahrokhi, M., F. Rostami, M.A. Md. Said, S.R.S. Yazdi, and Syafalni, (2013). Experimental investigation of the influence of baffle position on the flow field, sediment concentration, and efficiency of rectangular primary sedimentation tanks. Journal of Hydraulic Engineering,. 139(1): p. 88-94.
Shahrokhi, M., F. Rostami, M.A.M. Said, and S.R.S. Yazdi, (2012). The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Applied Mathematical Modelling,. 36(8): p. 3725-3735.
Borna, M., A. Janfeshan, E. Merufinia, and A. Asnaashari, (2014). Numerical simulations of distribution and sediment transmission in pre-settled pools using Finite Volume Method and comparison with experimental results. Journal of Civil Engineering and Urbanism,. 4(3): p. 287-292.
Rad, M.J., P.E. Firoozabadi, and F. Rostami, (2022). Numerical Investigation of the Effect Dimensions of Rectangular Sedimentation Tanks on Its Hydraulic Efficiency Using Flow-3D Software. Acta Technica Jaurinensis,. 15(4): p. 207-220.
Hirom, K. and T.T. Devi, (2022). Application of computational fluid dynamics in sedimentation tank design and its recent developments: A review. Water, Air, & Soil Pollution,. 233: p. 1-26.
Shahrokhi, M., F. Rostami, M.A.M. Said, S.-R. Sabbagh-Yazdi, S. Syafalni, and R. Abdullah, (2012). The effect of baffle angle on primary sedimentation tank efficiency. Canadian Journal of Civil Engineering,. 39(3): p. 293-303.
Tarpagkou, R. and A. Pantokratoras, (2014). The influence of lamellar settler in sedimentation tanks for potable water treatment—A computational fluid dynamic study. Powder Technology,. 268: p. 139-149.
Ekama, G. and P. Marais, (2004). Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model. Water research,. 38(3): p. 495-506.
Gharagozian, A., (1998). Circular secondary clarifier investigations using a numerical model., University of California, Los Angeles.
Shahrokhi, M., F. Rostami, and M.A.M. Said, (2013). Numerical modeling of baffle location effects on the flow pattern of primary sedimentation tanks. Applied Mathematical Modelling,. 37(6): p. 4486-4496.
Razmi, A.M., R. Bakhtyar, B. Firoozabadi, and D.A. Barry, (2013). Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks. Canadian Journal of Civil Engineering,. 40(2): p. 140-150.
Liu, Y., P. Zhang, and W. Wei, (2016). Simulation of effect of a baffle on the flow patterns and hydraulic efficiency in a sedimentation tank. Desalination and Water Treatment,. 57(54): p. 25950-25959.
Saeedi, E., E. Behnamtalab, and S. Salehi Neyshabouri, (2020). Numerical simulation of baffle effect on the performance of sedimentation basin. Water and environment journal,. 34(2): p. 212-222.
Miri, J.K., B. Aminnejad, and A. Zahiri, (2023). Numerical Study of Flow Pattern, Sediment Field and Effect of the Arrangement of Guiding Blades (Baffles) on Sedimentation in Pre-Sedimentation Basins by Numerical Models. Water Resources,. 50(1): p. 68-81.
Heydari, M.M., M. Rahbani, and S.M.M. Jamal, (2014). Experimental and numerical investigations of baffle effect on the removal efficiency of sedimentation basin. Advances in Environmental Biology,: p. 1015-1022.
Guo, H., S.J. Ki, S. Oh, Y.M. Kim, S. Wang, and J.H. Kim, (2017). Numerical simulation of separation process for enhancing fine particle removal in tertiary sedimentation tank mounting adjustable baffle. Chemical engineering science,. 158: p. 21-29.
Poorkarimi, A., Mafakheri, K., & Maleki, S. (2024). Effect of inlet and baffle position on the removal efficiency of sedimentation tank using Flow-3D software. Journal of Hydraulic Structures, 9(4), 76-87. doi: 10.22055/jhs.2024.44817.1265
MLA
Ali Poorkarimi; Khaled Mafakheri; Shahrzad Maleki. "Effect of inlet and baffle position on the removal efficiency of sedimentation tank using Flow-3D software". Journal of Hydraulic Structures, 9, 4, 2024, 76-87. doi: 10.22055/jhs.2024.44817.1265
HARVARD
Poorkarimi, A., Mafakheri, K., Maleki, S. (2024). 'Effect of inlet and baffle position on the removal efficiency of sedimentation tank using Flow-3D software', Journal of Hydraulic Structures, 9(4), pp. 76-87. doi: 10.22055/jhs.2024.44817.1265
VANCOUVER
Poorkarimi, A., Mafakheri, K., Maleki, S. Effect of inlet and baffle position on the removal efficiency of sedimentation tank using Flow-3D software. Journal of Hydraulic Structures, 2024; 9(4): 76-87. doi: 10.22055/jhs.2024.44817.1265