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Abstract 
The stability of earth dams is assessed through safety factors, indicating stability if they exceed 

one. Due to soil property uncertainties, fuzzy logic tools seem suitable for slope stability 

analysis. Uncertainties in parameters like unit weight, cohesion, and internal friction angle can 

be encompassed by fuzzy set theory. This study employs fuzzy set theory to analyze slope 

stability factor of safety, considering the varied materials and soils in earth dams. Information 

and parameters were gathered, and slopes were modeled using Slide (v. 6) software. Shear 

strength parameters and safety factors were categorized based on results and expert opinions, 

defining ranges for each. MATLAB software applied fuzzy logic rules to relate inputs (unit 

weight, cohesion, friction angle) to the output, factor of safety. Comparing results from 

probabilistic and fuzzy methods revealed close numerical alignment. The fuzzy method, with 

adaptable rules accommodating different conditions, yielded quicker and more accurate safety 

assessments, assuming specific data inputs. Overall, the fuzzy approach offers flexibility, 

facilitating quicker and more accurate determinations of safety factors, albeit requiring specific 

data assumptions. 
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1. Introduction  
Slope analysis is critical in the process of developing an earth dam. In reality, the slope 

stability of earth dams is generally assessed using safety factors (FS), and dam slopes are 

deemed stable if these factors exceed one [1]. However, there is a significant amount of 

uncertainty in predicting the slope stability. These uncertainties are divided into two categories: 
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those connected with material characteristics and those associated with layer geometry and 

geotechnical profile [2-4]. Artificial intelligence approaches have been widely employed in 

recent decades to simulate various geotechnical problems [5-7], owing to their capacity to 

account for uncertainty. Analyzing the stability of slopes with artificial intelligence methods has 

also been one of the topics of interest. For example, Khajehzadeh et al. [8] suggested an effective 

intelligent method based on artificial neural networks (ANN) to estimate the factor of safety of 

homogeneous slopes under static and dynamic loading. Paliwal et al. [9] also employed an 

artificial neural network to forecast the stability of a seam and the slope of the remaining soil in 

the Himalayas.  

Among these methods, fuzzy logic method is a very useful and practical method for 

analyzing complex problems with high uncertainties. Fuzzy systems are a popular technique that 

can be employed in the geotechnical problems specially in the stability analysis of slopes and 

earth dams [10]. Fuzzy theory may be used to assess known uncertainties in slope stability 

evaluation as an alternative to probabilistic approaches. Fuzzy systems employ variables with 

some uncertainty, which are subsequently used in a constitutive model for every particular 

material.  Fuzzy numbers theory has already been applied to slope stability evaluations in a few 

works [11-16]. Peng and Huang [14] fully analyzed the safety of earth dams using fuzzy 

categorization and generated safety assessment indices by analyzing many elements influencing 

operational and general safety in earth dams. Yang [17] applied fuzzy assessment to determine 

the safety performance of an earth dam using the analytic hierarchy process  (AHP) and 

concluded that the earth dams might be designed with a combination of natural, social, and 

economic elements. Lim et al. [18] used three-dimensional analysis to assess slope stability and 

make recommendations for future evaluations. Fattahi [19] investigated slope stability prediction 

utilizing soft computing approaches such as the adaptive neuro-fuzzy inference system (ANFIS), 

which is based on clustering. The results shown that the ANFIS-SCM (subtractive clustering 

method) model is a valid system modeling approach for predicting slope stability. Haghshenas et 

al. [20] employed fuzzy multi-criteria decision making (FMCDM) methodologies to assess the 

importance of each component in dam construction projects. Due of the uncertainty in each 

factor, they employed a fuzzy inference approach to quantify their likelihood and severity. The 

outcomes of this analysis indicated that the risk of design faults is the biggest of all the examined 

hazards.  

The purpose of this research is to evaluate the feasibility of the fuzzy method in analyzing the 

stability of the slope of earth dams with regard to the uncertainty of geotechnical parameters. 

The reason why the fuzzy method is used in this study is that there are imprecise facts about the 

limits of the parameters. However, the probabilistic method which is based on a set of random 

states of parameters and indicates the chance of a particular state cannot be used alone, but in 

combination with the fuzzy method, they can complement each other and use both methods. 

Therefore, it is necessary to use a probabilistic method to analyze slope stability so that these 

two methods complement each other. Since the shear resistance parameters of different materials 

used in earth dams are very different, a range of these parameters is used to obtain the reliability 

factor in reality. So, in this research, stable slopes for earth structures like earth dams and 

embankments are modeled using the fuzzy method. If a suitable method can be found to 

determine whether the slope is stable or not in this method, it is possible to determine the 

stability of slopes without the need of modeling and using this theory. 
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2. Analysis Method 
To achieve the objectives of this study, the following actions have been taken: 

✓ Data collection and gathering of material parameters necessary for analyzing the 

stability of embankment slopes of an earth dam through literature review and calculation 

of statistical parameters of the data. 

✓ Modeling and stability analysis of slope structures using a probabilistic approach in 

Slide (v. 6) software with varying slopes within the range of material parameters. 

✓ Investigation of variations in the factor of safety with different parameters. 

✓ Classification of shear strength parameters and obtained factors of safety from the 

previous stage analysis using expert opinions, and determination of ranges for each of 

them. 

✓ Calculation of statistical parameters for different classifications. 

✓ Utilization of fuzzy logic method in MATLAB software and definition of rules to relate 

analysis parameters (input data) to the factor of safety (output data). 

✓ Comparison of results obtained from the probabilistic model with those obtained from 

the fuzzy system and determination of the best fuzzy rules and conclusions. 

In this study, initially, all the necessary information and parameters, i.e., the cohesion (C), 

unit weight (γ), and internal friction angle (), for analyzing the stability of embankment slopes 

of an earth dam have been collected from various sources, as observed in Table 1. 

 
Table 1. Values of shear strength parameters of materials from literature review 

Ingredients γ (kN/m3 ( C (kN/m² (  (deg.) Reference 

Tar Sand 91-94(PCF) 15-37 18-24 [21] 

Concrete and Asphalt  14.7-17.8 38-80 39.1-45 [22] 

Cohesive Soil and Crushed Concrete 16.77-17.75   [23] 

Weak soil and Concrete Aggregate 12.16-14.42   [24] 

Concrete and Soil 16.77   [25] 

Polypropylene Strips and Lateritic Soils 16.6-17.8 53-54 21.0-32.0 [26] 

Substrate (sand, silt and clay) and glass 17.36   [27] 

Glass and Subgrade Soil  13.97-16.18   [28] 

Glass powder and Subgrade Soil  18-20 42.7-106.4 27.4-43.5 [29] 

Fly Ash  15.4-18.14   [30] 

Chalk  20-131 30-42.0 [31] 

Dumped Rock    35-50 [32] 

Rock   20-65.0 [33] 

Rockfill   35-52.0 [34] 

Rock 25.5 
10-50.0 

 [35] 

Rock 20.6  [35] 

Rock 23 11.1-117.66 35.69-45.94 [36] 

Rock 8.8-23.2   [37] 

Gravel Mixtures   32-45.0 [38] 

Sand and Gravel Mixtures 15.89-16.28  34-45.0 [38] 

Sand and Gravel Mixtures 23 15-59.4 31-67 [39] 

Sand and Gravel Mixtures   23.7 [40] 

Sand and Gravel Mixtures   32-53 [41] 

sand mixtures 15.89  32 [38] 

sand mixtures   26.7-27 [40] 

sand mixtures 14.47-17.12  18.3-41.6 [42] 

sand mixtures 13.6 9.8 13.6-21 [43] 

Clay mixtures  11.87 13-98 0-34 [44] 

Clay-Gravel Mixture   35-50.0 [45] 

Silty Sand   29-37 [46] 
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The Slide software (v. 6) was utilized for probabilistic stability analysis of slopes. This 

software enables extensive probabilistic analyses while allowing users to select the type of 

probabilistic analysis they prefer. Additionally, users have the capability to assign statistical 

distribution types for each of the input parameters, including material properties, groundwater 

levels, and loads. Sensitivity analysis in this software allows users to determine the effect of 

each variable on the factor of safety. 

After collecting the desired parameters from each of the available materials, their statistical 

parameters, including Maximum, Minimum, Average, Median, Variance, and Standard 

Deviation, were calculated. Then, the slope was modeled in the Slide software. Since the slope is 

completely heterogeneous, probabilistic slope analysis was performed in the Slide software. For 

this purpose, the GLE/Morgenstern method was used for probabilistic analysis as it considers 

both the force equilibrium and moment equilibrium in analysis and design, which is the best 

method. However, other methods such as Bishop and Janbu do not consider both of these 

equilibrium states in their analysis. The slip surface was considered circular, the search method 

was set to Grid Search, the design option was selected as Statistic, Monte Carlo sampling 

method was used, and 1000 samples were chosen by default. The analysis was performed on 

three different slopes: 1 to 1, 1 to 2, and 1 to 2.5, with a constant slope height of 80 meters. 

Then, the relative minimum and maximum values, mean, and standard deviation for the cohesion 

(C), unit weight (γ), and internal friction angle () parameters, which had been previously 

calculated, were defined as parameters with uncertainty, and the normal distribution curve was 

selected. The results of the analysis are presented in Figure 1. 

   
Slope 1 to 1 Slope 1 to 2 Slope 1 to 2.5 

Figure 1. Results of modeling and probabilistic analysis of different slopes using Slide 

 

In Table 2, the results of the analysis are also provided. According to the results obtained 

from the analysis of the three slopes in Table 2, slopes 1 to 2 and 1 to 2.5 are completely stable 

and have high factors of safety. Therefore, slope 1 to 1, which has lower factors of safety and is 

closer to 1, is considered as the critical slope for design purposes. 
Table 2. summarizes the results of modeling with different slopes. 

RI (lognormal) RI (normal) PF % FS (mean) FS (deterministic) Slope 

0.353 0.469 34.068 1.211 1.11 1:1 

1.601 1.263 9.3 1.934 1.796 1:2 

2.037 1.457 5.3 2.298 2.142 1:2.5 

FS (deterministic): The deterministic factor of safety of the slope obtained from conventional analysis with inputting 

average parameters. 

FS (mean): The probabilistic stability factor of the slope obtained from probabilistic analysis. 

PF: The percentage of failed samples to the total number of samples. 

RI: Reliability index (for normal distribution, represents the number of standard deviations that separate the mean 

Factor of Safety, from the critical Factor of Safety ( = 1 ). 
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Following that, a scatter plot for each of the unknown parameters relative to the factor of 

safety was plotted, and the data for each output were extracted from Excel to compare the factors 

of safety for all samples for each of the unit weight, cohesion, and friction angle parameters. 

Since the factors of safety for parameters were the same in each sample, it was concluded that 

the parameter values simultaneously and in conjunction with other parameters provided a 

consistent factor of safety. For example, for the first sample, the factor of safety for all cohesion, 

friction angle, and unit weight parameters was 0.146, and similarly, the factors of safety for these 

three parameters were the same for other samples. Therefore, 1000 samples obtained from the 

probabilistic scenarios provided by the software were considered as real-life samples. 

Taking into account real conditions, experiences, and consulting experts, the factor of safety 

was divided into three categories. The considered categories for the factor of safety were as 

follows: The first category included factors of safety less than 1, indicating instability (F). The 

second category included factors of safety greater than 1 and less than 1.5, suggesting potential 

stability (PS). The third category included factors of safety greater than 1.5, indicating definite 

stability (S). Based on these three categories, the unit weight, cohesion, and friction angle 

parameters were also divided into three categories within these ranges, considering low (L), 

medium (M), and high (H) states for each. 

The maximum, minimum, mean, and median values for each parameter category were 

calculated and are presented in Table 3. Additionally, scatter plots were created for each 

parameter within each category to facilitate analysis. The scatter plot depicting cohesion versus 

factor of safety is presented in Figure 2, the plot for friction angle versus factor of safety is 

displayed in Figure 3, and the plot illustrating unit weight versus factor of safety is shown in 

Figure 4. 

 
Table 3. Statistical values of the classified shear strength parameters of samples 

FS ≥ 1.5 FS < 1.5≥1 1> FS Parameter 

67.93 54.58 32.65 Median 

C (kN/m2)  
69.59 55.32 34.88 Average 

1.07 0.41 0.06 Min 

143.53 170.07 97.24 Max 

44.85 33.2 20.99 Median 

 (deg.) 
43.81 32.67 20.62 Average 

19.46 11.49 0.72 Min 

57.34 49.01 36.56 Max 

15.93 16.97 16.9 Median 

γ (kN/m3) 
16.11 17.04 16.89 Average 

11.91 12.12 11.95 Min 

23.69 24.25 24.46 Max 

1.73 1.24 0.76 Median FS 
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Figure 2. The values of the obtained safety 

factors based on samples with different 

cohesions 

Figure 3. The values of the obtained safety 

factors based on samples with different friction 

angles 

 
Figure 4. The values of the obtained safety factors based on samples with different unit weights 

 

As observed in Figure 4, the variations in unit weight were nearly constant across all three 

categories. Therefore, only one average condition for unit weight was considered. However, in 

the cohesion and friction angle plots, as expected, it was observed that with an increase in these 

parameters, the safety factor also increased. Nevertheless, many values in these categories 

overlapped with each other. This implies that, for instance, a range of values from the first 

category, yielding safety factors less than 1, might also fall within the second or third category, 

where their safety factors are greater than 1 or 1.5, respectively. In such situations, analyzing the 

safety factor becomes challenging because it's not clear which specific cohesion, unit weight, or 

friction angle value may result in what safety factor. In these circumstances, fuzzy logic theory is 

highly applicable and provides an appropriate solution. These overlaps and uncertain boundaries 

essentially embody the concept of fuzzy logic, which has been introduced for handling uncertain 

boundaries and ambiguous parameters.  

 

2.1. Fuzzy Stability Analysis 
To utilize fuzzy theory, MATLAB software is necessary. The fuzzy system comprises inputs, 

rules, and outputs. Here, the inputs include unit weight, cohesion, and friction angle, while the 

output is the factor of safety. The considered ranges are explained further in Table 4.  
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Table 4. Information of the defined fuzzy system for models 

Input 

C (kN/m2)  

L Type trapmf 

M Type trimf 

H Type trapmf 

 (deg.) 

L Type trapmf 

M Type trimf 

H Type trapmf 

γ (kN/m3) M Type trimf 

Output FS 

F Type trapmf 

PS Type trimf 

S Type trapmf 

Methods 

And method min 

Or method max 

Implication min 

Aggregation max 

Defuzzification centroid 

trapmf = Trapezoidal membership function 

trimf = Triangular membership function 

L=low, M = medium and H =high  

F = instability 

PS = potential stability  

S = definite stability 
 

The ranges for each category were selected based on the scatter plots from Figures 2 to 4. To 

do this, scattered points were disregarded, and boundary points for each category were 

considered to define its range. In these circumstances, some points also overlapped with other 

categories. The membership degree of each point to each category, indicating the extent to which 

it belongs to that category, was determined using fuzzy membership functions. A fuzzy inference 

system (FIS) consists of 6 stages, which are: 

1. Input Data: In this stage, the input parameters such as unit weight, cohesion, and friction 

angle, which have been predetermined, are specified as input parameters. 

2. Fuzzification: In this stage, a specific function is determined for each parameter, and the 

ranges considered for the functions are also indicated on the graph. In this part, the 

membership degree of the input functions is determined. Among the functions that are 

most commonly used are triangular, trapezoidal, Gaussian, sigmoidal, π-shaped, and S-

shaped. 

3. Implication: In this stage, using a set of rules, we relate the input data to the output data. 

To define these rules, past experiences, expert opinions, and comparison with actual 

results are utilized. If necessary, adjustments to the rules can be made to reduce errors, 

ensuring that fuzzy analysis results closely match real-world outcomes. Conditions can 

be defined using "and" and "or" operators between sentences. The "and" operator (fuzzy 

intersection), also known as "T-norm," has several methods, including "min" and "prod," 

which consider the minimum and product of states, respectively. Similarly, the "or" 

operator (fuzzy union), also known as "S-norm," has two methods: "max" and "probor," 

which consider the maximum value and the probabilistic sum of functions, respectively. 

The Implication method itself can also have two modes: one using the minimum value 

and the other using the product of functions.  

4. Aggregation: In this stage, the outputs of all rules are combined with each other to form 

a composite fuzzy set. Aggregation of output functions is also performed using various 
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methods, including "max," "sum," and "probor," which respectively consider the 

maximum value, sum, and probabilistic sum of functions. 

5. Defuzzification: Using specific methods, the fuzzy output function obtained from the 

previous stage, which is in the form of a fuzzy graph and lacks a clear concept, can be 

transformed into a definite non-fuzzy number. Some of the most important methods for 

defuzzifying the output function includes centroid method, median, mean of maximum, 

maximum value, and minimum of maximum value. However, besides these, other 

functions can also be defined and used. 

6. Output: The numerical value obtained after defuzzification provides a degree of 

membership from the output functions based on the defined conditions and selected 

methods, which essentially represents the required confidence level. 

In this study, various scenarios for each of these methods and conditions were considered. 

Many scenarios were discarded due to significant discrepancies with the original results obtained 

from slope stability analysis in the Slide software, and only six scenarios with results close to 

each other were investigated and compared. 

 

Conditions Considered in the Fuzzy System 
The functions chosen for this study were triangular and trapezoidal functions. The reason for 

selecting these two functions is their wide applicability, ease of use, and the possibility of 

selecting the ranges of functions. Although using curved functions such as Gaussian and bell-

shaped curves might potentially provide higher accuracy if the curves are considered 

symmetrically, any change in one side of the curve would affect the other side, making the 

selected functions asymmetric. Therefore, it would be challenging to determine the desired range 

accurately. In Figure 5, the components of the fuzzy system and parameters are specified. 

 

 
Figure 5. Parameters defined for the fuzzy system 

 

  
(a) (b) 
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(c) (d) 

Figure 6. Functions and Parameter Ranges for (a) Cohesion, (b) Internal Friction Angle, (c) Unit 

Weight and (d) Factor of Safety 

 

In Figure 6, the selected functions and the considered ranges for each function have been 

specified. The membership degree of each parameter can be determined in these functions. In 

this way, the y-axis represents the membership degree function from 0 to 1, while the x-axis 

denotes the range of the data. As previously mentioned, the selection of the ranges for each 

category is based on the obtained graphs from Figures 2 to 4, adjusted from the initial data. In 

triangular functions, the apex of the triangle represents the mean parameter value in that 

category. Additionally, the points to the left and right of each category represent the minimum 

and maximum parameter values in that category, respectively. As observed, the membership 

degree of values before the mean increases until it reaches a membership degree of 1, then 

decreases after the mean until it reaches 0. Points between two categories have a membership 

degree in both categories, decreasing in one category and increasing in the other. It is also 

possible for the membership degree in both categories to be 0.5. In the categories with the 

highest values, a triangular function with infinite properties is typically used. This means that if 

the parameter value exceeds a certain limit, its membership in that category will be complete, 

with a membership degree of 1. This condition implies that the infinite triangular function can 

also be used for the low (L) state, meaning that even for values below a certain threshold, its 

membership in this category will be 1. For the conditions and rules of the fuzzy system, attempts 

and errors were made in ranges close to reality, and ultimately, the combination of these 

conditions, which had less error compared to others, was selected. 

 
Table 5. The range of each function defined for the models  

 I/O Parameter  Function type Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Input 

C (kN/m
2
)  

Fig. 6(a) 

L = trapmf [-inf  -inf  0.06  97] [-inf  -inf  0.06  97] [-inf  -inf  0.06  97] [-inf  -inf  0.06  97] [-inf  -inf  0.06  97] [-inf  -inf  0.06  97] 

M = trimf [0.4  55 143] [0.41  55.32  170] [0.41  55.32  170] [0.41  55.32  170] [0.41  55.32  170] [0.41  55.32  170] 

H = trapmf [1  143  inf  inf] [1.07  143  inf  inf] [1.07  143  inf  inf] [1.07  143  inf  inf] [1.07  143  inf  inf] [1.07  143  inf  inf] 

 (deg.)  

Fig. 6(b) 

L = trapmf [-inf  -inf  0.72 37] [-inf  -inf  0.72 36.56] [-inf  -inf  0.72 36.56] [-inf  -inf  0.72 36.56] [-inf  -inf  0.72 36.56] [-inf  -inf  0.72 36.56] 

M= trimf [11.5  33  49] [11.5 32.67  49] [11.5 32.67  49] [11.5 32.67  49] [11.5 32.67  49] [11.5 32.67  49] 

H = trapmf [19.5 57  inf  inf] [19.46  57.34  inf  inf] [19.46  57.34  inf  inf] [19.46  57.34  inf  inf] [19.46  57.34  inf  inf] [19.46  57.34  inf  inf] 

γ (kN/m
3
) 

 Fig. 6(c) 
M = trimf [12  18  24] [11.91 16.68 24.46] [11.91 12.12 23.69 24.46] [11.91 12.12 23.69 24.46] [11.91 12.12 23.69 24.46] [11.91 12.12 23.69 24.46] 

Output 
FS 
 Fig. 6(d) 

F = trapmf [-inf  -inf  1  1] [-inf  -inf  1  1.1] [-inf  -inf  1  1.1] [-inf  -inf  1  1.1] [-inf  -inf  1  1.1] [-inf  -inf  1  1.1] 

PS = trimf [1  1.24  1.5] [1  1.24  1.5] [1  1.24  1.5] [1  1.24  1.5] [1  1.24  1.5] [1  1.24  1.5] 

S = trapmf [1.3  2  inf  inf] [1.3  2  inf  inf] [1.3  2  inf  inf] [1.3  2  inf  inf] [1.3  2  inf  inf] [1.3  2  inf  inf] 
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After several trials and errors, six models were chosen, which had similar results and were 

better than other analyses. Tables 5 and 6 provide information on the methods, rules applied, and 

changes made in the six fuzzy analyses performed.  

 
Table 6. Defined rules for models 

Model Rule No. Rules Model Rules 

1 

1 If (C is L) and ( is L) and (γ is M) then (FS is F)  

4 

If (C is L) and ( is L) and (γ is M) then (FS is F)  

2 If (C is L) and ( is M) and (γ is M) then (FS is F)  If (C is L) and ( is M) and (γ is M) then (FS is F)  

3 If (C is L) and ( is H) and (γ is M) then (FS is PS)  If (C is L) and ( is H) and (γ is M) then (FS is PS)  

4 If (C is M) and ( is L) and (γ is M) then (FS is F)  If (C is M) and ( is L) and (γ is M) then (FS is PS)  

5 If (C is M) and ( is M) and (γ is M) then (FS is F)  If (C is M) and ( is M) and (γ is M) then (FS is PS)  

6 If (C is M) and ( is H) and (γ is M) then (FS is PS)  If (C is M) and ( is H) and (γ is M) then (FS is PS)  

7 If (C is H) and ( is L) and (γ is M) then (FS is PS)  If (C is H) and ( is L) and (γ is M) then (FS is PS)  

8 If (C is H) and ( is M) and (γ is M) then (FS is PS)  If (C is H) and ( is M) and (γ is M) then (FS is PS)  

9 If (C is H) and ( is H and (γ is M) then (FS is S)  If (C is H) and ( is H and (γ is M) then (FS is S)  

2 

1 If (C is L) and ( is L) and (γ is M) then (FS is F)  

5 

If (C is L) and ( is L) and (γ is M) then (FS is F)  

2 If (C is L) and ( is M) and (γ is M) then (FS is F)  If (C is L) and ( is M) and (γ is M) then (FS is F)  

3 If (C is L) and ( is H) and (γ is M) then (FS is PS)  If (C is L) and ( is H) and (γ is M) then (FS is PS)  

4 If (C is M) and ( is L) and (γ is M) then (FS is F)  If (C is M) and ( is L) and (γ is M) then (FS is PS)  

5 If (C is M) and ( is M) and (γ is M) then (FS is PS)  If (C is M) and ( is M) and (γ is M) then (FS is PS)  

6 If (C is M) and ( is H) and (γ is M) then (FS is S)  If (C is M) and ( is H) and (γ is M) then (FS is PS)  

7 If (C is H) and ( is L) and (γ is M) then (FS is PS)  If (C is H) and ( is L) and (γ is M) then (FS is PS)  

8 If (C is H) and ( is M) and (γ is M) then (FS is S)  If (C is H) and ( is M) and (γ is M) then (FS is PS)  

9 If (C is H) and ( is H and (γ is M) then (FS is S)  If (C is H) and ( is H and (γ is M) then (FS is S)  

3 

1 If (C is L) and ( is L) and (γ is M) then (FS is F)  

6 

If (C is L) and ( is L) and (γ is M) then (FS is F)  

2 If (C is L) and ( is M) and (γ is M) then (FS is F)  If (C is L) and ( is M) and (γ is M) then (FS is F)   

3 If (C is L) and ( is H) and (γ is M) then (FS is PS)  If (C is L) and ( is H) and (γ is M) then (FS is PS)   

4 If (C is M) and ( is L) and (γ is M) then (FS is PS)  If (C is M) and ( is L) and (γ is M) then (FS is PS)  

5 If (C is M) and ( is M) and (γ is M) then (FS is PS)  If (C is M) and ( is M) and (γ is M) then (FS is PS)   

6 If (C is M) and ( is H) and (γ is M) then (FS is PS)  If (C is M) and ( is H) and (γ is M) then (FS is PS)  

7 If (C is H) and ( is L) and (γ is M) then (FS is PS)  If (C is H) and ( is L) and (γ is M) then (FS is PS)  

8 If (C is H) and ( is M) and (γ is M) then (FS is PS)  If (C is H) and ( is M) and (γ is M) then (FS is PS)  

9 If (C is H) and ( is H and (γ is M) then (FS is S)  If (C is H) and ( is H and (γ is M) then (FS is S)  

 

3. Analysis of Results 
Figure 7 compares the factor of safety obtained from the fuzzy analyses with the estimated 

and initial factor of safety. Statistical parameters were utilized for a more accurate comparison. 

These parameters include:  

• RMSE (Root Mean Square Error): The square root of the mean of the squared 

differences between estimated and simulated values, providing an indication of the 

typical deviation. 

• CD (Coefficient of Determination): Indicates the proportion of the variance in the 

simulated values that is predictable from the estimated values. 

• EF (Modeling Efficiency): Measures the efficiency of the modeling process. 

• CRM (Coefficient of Residual Mass): Measures the remaining mass coefficient. 

• SE (Standard Error): Measures the typical deviation of the estimated values from the 

simulated values. 

• RE (Relative Error): Indicates the relative deviation between estimated and simulated 

values. 

• COREE (Correlation): Also known as the correlation coefficient (r), measures the 

strength and direction of the linear relationship between estimated and simulated values. 

 



A. Falamaki, A. H. Shafiee, M. Esfandiyari 

 

 
SPRING 2024, Vol 10, No 3, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                  

44 

 
Figure 7. Comparison of Estimated and Simulated Factor of Safety in Different Models 
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RMSE = [
∑ (Si − Mi)

2n
i=1

n
]

1
2 100

M̅
 (1) 

  

CD =
∑ (Mi − M̅)2n
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∑ (Si − M̅)2n
i=1

 (2) 
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i=1

n
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i=1

= 1 −
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∑ (Mi − M̅)2n
i=1

 (3) 
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∑ Mi
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1

n − 2
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n

i=1
−
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∑ (Si − S̅n
i=1 )

] (5) 

  

RE = |
Mi − Si

Mi
| × 100 (6) 

  

R =
n(∑ (Pi

n
i=1 )(Oi)) − (∑ Pi)(∑ Oi)

n
i=1

n
i=1

√n[∑ (Pi)
2 − (∑ (Pi))n

i=1
2n

i=1 ][n ∑ (Oi)
2 − (∑ (Oi))n

i=1
2n

i=1 ]

  , −1 ≤ r ≤ 1 
(7) 

  
In the aforementioned equations, Si and Mi denote the simulated and measured values, 

respectively. S̅ and M̅ represent the mean of the simulated and measured values, respectively, 

while n denotes the sample size. Zarei et al. [47] explained the characteristics of these 

parameters.  The minimum value for Mean Error (ME), Root Mean Square Error (RMSE), and 

Coefficient of Determination (CD) may be equal to zero, while the maximum value for 

Efficiency Factor (EF) could be one. EF and Correlation Ratio Measure (CRM) may assume 

values less than zero. A higher RMSE value indicates the accuracy of simulations (whether 

overestimation or underestimation is present). The CD statistic signifies the relationship between 

the scatter of simulated values and measurements. EF compares the simulated values with the 

average of measured values. A negative EF value implies that the average of measured values 

offers a superior estimate compared to the simulated values. CRM gauges the model's inclination 

to overfit or underfit the measurements. A negative CRM indicates a propensity to overfit. When 

all simulated and measured data are identical, the resultant statistics are as follows: ME = 0; 

RMSE = 0; CD = 1; EF = 1; CRM = 0 [48]. The statistical outcomes derived from the six models 

are illustrated in Figure 8. 
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Figure 8. Comparison of statistical parameters for different models. 

 

For a better understanding of each model's behavior, the percentage of data points with 

relative errors (RE) less than 10, 20, 50, and 100% is counted and shown in Figure 9. 

Essentially, the higher the percentage of data points with lower REs, the better the model. For 

example, RE less than 10% indicates an error of less than 10%. The higher the number of data 

points with errors less than 10% in a model, the more practical and accurate that model is. 

  

  
Figure 9. Comparative plots of parameters with RE less than a certain value (%) for different 

models 
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In Table 7, all statistical parameters along with their comparison are provided side by side. 

The best models, in order, are Model 6, Model 4, Model 3, Model 5, Model 1, and Model 2. 

 
Table 7. Comparison of all statistical parameters obtained from the conducted analyses 

Parameters RMSE CD EF CRM Standard err COREE RE≤10% 

Model 1 15.99 1.32 0.81 0.03 0.19 0.91 51.70 

Model 2 17.90 0.93 0.77 -0.08 0.19 0.91 32.57 

Model 3 16.13 1.08 0.81 -0.05 0.19 0.91 42.99 

Model 4 15.00 1.04 0.84 0.02 0.18 0.92 50.10 

Model 5 16.67 0.84 0.80 0.02 0.18 0.91 47.60 

Model 6 14.26 1.55 0.85 0.03 0.16 0.94 54.21 

 

4. Conclusions  
Feasibility of the fuzzy method in analyzing the stability of soil slopes was investigated 

considering the uncertainty of geotechnical parameters. The factor of safety of the slope was 

evaluated using two methods. The first method involved slope analysis and design in Slide 

software, where the factors of safety were obtained for 1000 samples using statistical and real 

data of materials in a soil dam. In this method, three slopes, namely 1:1, 1:2, and 1:2.5, with a 

constant height of 80 meters were considered, among which slopes with ratios of 1:2 and 1:2.5 

were completely stable, while the 1:1 slope exhibited critical conditions. In this scenario, the 

slope was modeled using probabilistic methods, and the results obtained were extracted as 

output. The second method aimed at finding the factor of safety in MATLAB software through 

fuzzy theory, where the slope itself was not modeled. Instead, factors of safety were derived 

using fuzzy rule definitions and input parameters (i.e., cohesion, internal friction angle, and soil 

unit weight) to obtain the output results (real factors of safety). Various scenarios were 

considered for the fuzzy method, many of which were eliminated due to high error rates, and 

only six scenarios that yielded the best results and were close to each other were selected. 

Different assumptions were made for these six analyses. Subsequently, statistical equations were 

employed to compare the six models. 

The results of comparing the statistical parameters are summarized in Table 7. Ultimately, by 

comparing the models, it was concluded that Model 6 (with the assumptions specified for this 

model in Tables 5 and 6) had the closest values to the real factors of safety and the least error 

compared to other models, demonstrating better performance. The efficiency of this model is 

85%, with a standard error of 16%, which is the lowest error compared to the others. The 

findings of this study confirm the applicability of the fuzzy method in slope stability analysis. A 

limitation of this study lies in its exclusive analysis of slopes under dry conditions, without 

accounting for fluctuations in groundwater levels. Consequently, it is essential to evaluate the 

method's efficacy across various underground water and drainage scenarios. 
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