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Abstract 
     In this research, we investigated the three-dimensional time averaged flow pattern around a 

single straight groyne. To measure the three-dimensional velocity components in the laboratory, 

we utilized an Acoustic Doppler Velocimeter (ADV). We employed Computational Fluid 

Dynamics (CFD) and Artificial Neural Network (ANN) techniques to simulate the crucial flow 

characteristics. To validate these methods, we compared the simulation results with the 

measured data. The findings demonstrate that the ANN approach, with R2 values of 0.9152, 

0.9150, and 0.9315, outperforms the CFD model, with R2 values of 0.8332, 0.8726, and 0.8051, 

in the prediction of the u and v velocity components as well as the velocity magnitude. The 

transverse velocity profiles indicate that the ANN method accurately predicts the velocity 

components and velocity magnitude, whereas the CFD method exhibits significant disparities 

from the measured data, particularly in the prediction of longitudinal and vertical velocity 

components, especially in the near-bed regions. The ANN method and the laboratory data 

display variations in their patterns across the shear layer and at the flow separation boundary, 

while the velocity profiles in the CFD method demonstrate a consistent increase from the right 

wall of the channel toward the main flow zone. Other flow features around the groyne, such as 

horseshoe vortex, secondary flow, clockwise and counterclockwise rotational flows around the 

groyne head and the length and precise center of the circulation zone are reasonably predicted by 

the ANN method. Furthermore, the ANN method accurately predicts increased velocity in the 

transverse direction around the groyne head and identifies two regions of amplified velocity 

magnitude at the cross sections downstream of the groyne in velocity magnitude contour plots. 

However, the values simulated by the CFD method deviate from the laboratory data. 
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1. Introduction  
A crucial topic in river engineering involves the erosion of river banks and its consequential 

impacts. This process leads to the loss of land along the riverbanks and poses a threat to nearby 

establishments. One primary approach to altering the river's course involves the installation of 

flow diversion structures, such as river groynes. Groynes, constructed from materials like riprap, 

gabions, or a mix of riverbed and riprap or gabion cover, are either permeable or impermeable 

structures. They function as a series of walls, implemented either sequentially or individually, to 

redirect high velocity flow away from the riverbanks. They are widely employed to safeguard 

outer walls in meanders, facilitate path modification, and reduce the width of the river. 

Furthermore, by generating low velocity circulation zones around and downstream of them, 

groynes promote sediment deposition near the primary shore, gradually fostering the natural 

development and stabilization of the riverbanks. 

Despite their simple design, the construction of groynes gives rise to intricate 3D turbulent 

flows around them. The direct interaction of the flow with the groyne leads to the development 

of various vortices, giving rise to low velocity circulation zone and the formation of a wake zone 

in a short length upstream and a large circulation zone downstream. The presence of these 

phenomena, along with turbulent eddies resulting from shear layer oscillations, contributes to the 

complexities of the flow around the groyne. 

The earliest laboratory study on groynes was carried out by Ahmad [1]. Koken & 

Constantinescu [2] conducted extensive research on the 3D flow structure (average and 

instantaneous) around a single groyne situated in a straight channel under both flat and 

developed bed conditions. In their study, they employed Large Eddy Simulation (LES) method 

for flow modeling. The researchers highlighted the significance of both local velocity 

amplification around the groyne head and the formation of horseshoe vortex in bed shear stress 

amplification. 

Koken & Constantinescu [3] further examined the flow structure around a single groyne, 

investigating the impact of the developed bed on the formation of vortex flows and bed shear 

stress distribution. They concluded that the horseshoe vortex structure is more stable in a flatbed 

condition and significantly more complex in the instantaneous structure in the developed bed 

condition. Additionally, Koken & Constantinescu [4] explored the flow around a lateral obstacle 

using the Detached Eddy Simulation (DES) method. The primary finding of this research is the 

variation in the size of Separated Shear layer (SSL) vortices with changes in Reynolds number. 

Duan [5] conducted a study on the average and turbulent flow structures around a straight groyne 

in a laboratory channel with a flat bed. In another publication by Duan et al. [6], the researchers 

explored the impact of a scoured hole on average and turbulent flow structures. 

Koken [7] used the DES method with a Reynolds number of 45000 to study the flow around 

groynes with varying attachment angles (60°, 90°, 120°). The findings revealed notable 

variations in the size, coherence, and direction of the horseshoe vortex around the groyne. 

Safarzadeh et al. [8] conducted simulations of turbulent flow in a laboratory channel and 

investigated the impact of altering groyne shape by using two different T-shaped groynes. The 

experimental findings suggest that groyne shape exerts a substantial influence on the 

characteristics of both average and turbulent flows, particularly in areas close to the channel bed. 

Safarzadeh & Brevis [9] emphasized the significance of assessing the reliability of existing 

numerical models for simulations and evaluated the effectiveness of Reynolds-averaged Navier-

Stokes (RANS) models in predicting flow structure in a shallow open channel with a lateral 

obstruction. The turbulence models RSM, and   were chosen for this investigation. The 

comparative findings revealed that the RSM model successfully predicted the length of the main 



Comparative Assessment of the Computational Fluid Dynamics and … 

 
SUMMER 2024, Vol 10, No 4, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

3 

vortex area, whereas the other two models exhibited significant limitations. 

Jeongsook Jeon and colleagues [10] carried out a set of laboratory investigations to analyze 

the flow dynamics around a rectangular groyne in an open channel. Among their key 

observations was the notable influence of the horseshoe vortex on the flow pattern surrounding 

the groyne. 

Although previous studies have shown advanced performance of numerical simulations, a 

comprehensive numerical model still faces limitations in predicting all aspects of complex 3D 

flow fields due to inherent assumptions and simplifications in turbulent flow modeling. 

However, advanced techniques like Large Eddy Simulation (LES) and Detached Eddy 

Simulation (DES) have been developed, they demand high-performance computational resources 

for accurately calculating high Reynolds number flows, such as those around river structures. 

Despite extensive laboratory studies and numerical simulations, accurately simulating all flow 

field parameters around groynes remains a formidable challenge. 

The use of soft computing methods, such as Artificial Neural Network (ANN), Genetic 

Programming (GP), Genetic Algorithm (GA), and others, stands in contrast to numerical 

simulations, offering cost-effective and intelligent solutions for complex engineering problems. 

These methods serve as valuable tools for addressing extensive problems that are not easily 

solved with traditional rule-based programs and are widely applied across various fields. AI has 

been employed to predict rainfall intensity [11, 12], forecast floods [13,14], estimate water 

quality parameters [15-17], predict the local scour depth around hydraulic structures [18-20] and 

determine hydraulic jump length [21-23]. Their versatility makes soft computing methods a 

valuable asset in addressing a wide range of water engineering challenges. 

It's evident that there has been a recent focus on leveraging soft computing methods for 

predicting flow fields in open channels. For instance, Yang and Chang [24] assessed the 

effectiveness of the ANN method in simulating longitudinal velocity profiles and predicting 

discharge in 90° combined open channels. Additionally, Gholami, A., et al. [25] employed 

Computational Fluid Dynamics (CFD) and ANN methods to predict 3D flow fields in a 90° 

curved channel. Ebtehaj & Bonakdari [26] successfully utilized ANN to predict sediment 

transport in sewer pipes which is a complex phenomenon. Furthermore, Sun et al. [27] evaluated 

the capability of ANN models in representing and modeling flow velocity distribution of 

combined open-channel flow using CFD data to construct and test the ANN models. Zaji and 

Bonakdari [20] applied ANN and GP methods to predict longitudinal velocity field in an open 

channel junction, and also compared the performance of ANN, GA, and CFD methods in the 

same channel. Safarzadeh et al., [28] modeled the longitudinal flow field around a single straight 

groyne of various lengths using two computational methods, GAA and GP. The results indicated 

that the final chosen GAA model outperformed the final chosen GP model. Safarzadeh et al. [29] 

investigated the complex 3D flow field around a straight groyne using artificial neural network 

methods DE-MLP and DE-RBF, demonstrating the capabilities of each method in predicting 

certain flow field characteristics.  

According to the study by Karki et al. [30], the effect of groynes orientation on near-bank 

flow and morphology was assessed in a natural meander bend using a two-dimensional (2D) 

numerical simulation. Wu and Qin [31] investigated the influence of flow and sediment transport 

processes on sedimentation in groyne fields with HLES model. Also, Pourshahbaz et al. [32] 

simulated the morphology and hydrodynamics  around groynes with Flow-3D model. Pandey et 

al. [33] predicted the maximum scour depth near spur dikes in uniform bed sediment using 

stacked generalization ensemble tree-based frameworks. Ding et al. [34] investigated the flow 

characteristics in a mildly meandering channel with a series of groynes. In this paper, the 
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numerical method based on the Renormalization Group (RNG) model is used to study the effects 

of groynes. Xie et al. [35] employed numerical simulation to predict the 3D flow structure and 

turbulence characteristics near permeable spur dike in channels with varying sinuosities.  

It appears that the previous studies have focused on either numerical simulations using CFD 

or soft computing techniques like ANN, but a comprehensive comparative evaluation of these 

two approaches for the groyne flow features has not been reported in the literature. The main 

goal of this study is to assess and compare the capabilities of CFD and ANN methods in 

simulating the complex time-averaged flow structures around a single straight groyne. The 

results obtained from both methods will be validated using measured datasets. 

The details of the laboratory study are presented in the following section. Then, the two 

mentioned methods are introduced and the settings for each are presented. Finally, the results of 

each method are compared in detail. 

 

2. Materials and Methods 

2.1. Experimental Study 
 

Figure 1 illustrates the laboratory experiments conducted in a flume with a length of 11 

meters and a rectangular cross-section with a width and depth of 1 meter. The flume's walls are 

made of glass, while its bottom is made of Perspex, facilitating comprehensive observation of 

the 3D flow field from all perspectives. Water entered the tank from below the flume through a 

head tank containing a curved side and bed transitions. The bed transition is outfitted with three 

non-submerged guide vanes designed to mitigate lateral flow oscillations upon entry into the 

channel. Surface waves generated by the inflowing flow are mitigated by a 1.5-meter-long 

polystyrene plate positioned near the inlet. Additionally, an automated flap weir is installed at 

the downstream end of the flume to regulate the inflow depth. 

The flow rate was measured using the ISOIL-MS2500 flow meter, which has an accuracy of 

0.1 l.s-1. Additionally, an ultrasonic sensor with a precision of ±0.1mm was used to gauge the 

free water surface of the inlet. 3D velocity measurements were carried out using a 10MHz ADV 

instrument (Nortek, down looking type), which provides an accuracy of 0.5% and a maximum 

measurement frequency of 200Hz. 

To position the ADV and collect data within a predefined non-uniform Cartesian grid, a fully 

automated traversing system with accuracies of 0.1 mm in the lateral and vertical directions, and 

1 millimeter in the longitudinal direction, was utilized. The initial velocity measurements were 

conducted under uniform flow conditions without a groyne at different sections along the 

centerline of the channel, indicating full development of the flow at a distance of 8 meters from 

the channel inlet. In the main study, single straight groynes of different lengths (120, 150, and 

200 mm) were placed in the developed section of the channel. These groynes were constructed 

from Perspex plates that were 1 cm thick and 20 cm high. The specific characteristics of the 

groynes and the hydraulic conditions of the tests are outlined in Table 1, with Uin and Hin 

denoting the water depth at the inlet and the bulk velocity, respectively. The inlet discharge was 

consistently kept at 60 l.s-1 throughout all the experiments. 

According to earlier studies, changes in depth and inlet Froude number do not result in 

significant differences in main flow features, such as the HSV system or flow separation region. 

However, variations in groyne length have a noticeable effect on both average flow 

characteristics and turbulence characteristics [16].  

The velocity measurements were carried out within non-uniform 3D grids, as shown in Figure 1, 

using a cartesian coordinate system (X, Y, and Z) to capture time-averaged velocity components 
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in the x-direction (u), y-direction (v), and z-direction (w). The measurement domain for the flow 

field extends to 7L upstream of the groyne and 17L downstream of it, where L represents the 

length of the groyne. The selection of the flow field measurement domain's extent upstream and 

downstream was based on the groyne's influence on near-bed flow and the recirculation zone. To 

capture the 3D characteristics of the flow around the tested groynes, measurements were taken 

on eight horizontal planes. Table 1 presents details of the measurement domains, where Zmax 

denotes the final horizontal measurement plane. Additionally, Nx, Ny, and Nz represent the 

number of measurement points in the x, y, and z directions, respectively. The sampling 

frequency is 100Hz, and the measurement duration at each point is 120 seconds. 

The average values of the three velocity components at each measurement point were 

calculated and used for training and testing the neural network. Additionally, the measured data 

are used to validate the results of the CFD model. 

 
Table 1: Details of the laboratory tests and geometric specifications of the tested groynes 

Experiment 

code 

Groyne 

length (L) 

Inlet water 

depth (Hin) 

(mm) 

Fr=Uin/(gHin)0.5 Re=UinHin/𝜈 
Zmax 

(mm) 
(Nx×Ny×Nz) 

SG-120-143 120 143 0.35 60,000 81 (20×15×8) 

SG-150-143 150 143 0.35 60,000 81 (20×15×8) 

SG-200-143 200 143 0.35 60,000 81 (20×15×8) 
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Figure 1. Laboratory flume and 3D measuring grid around a single straight groyne 

 

The iRIC software suite was created in 2014 through a collaboration between Professor 

Shimizu from Hokkaido University in Japan and Dr. Nelson from the USGS Institute. The aim 

was to develop software for simulating river flow and morphodynamics. This extensive software 

includes various subprograms tailored to simulate river phenomena, such as the Nays CUBE 

subprogram, which was specifically designed for 3D simulation of river hydrodynamics and 

morphodynamics. 

The fundamental equations consist of the time-averaged continuity and momentum equations, 

which are represented in the Cartesian coordinate system as equations 1 and 2: 
𝜕𝑈𝑖
𝜕𝑥𝑖

= 0 (1) 
𝜕𝑈𝑖
𝜕𝑡

+
𝜕𝑈𝑖𝑈𝑗

𝜕𝑥𝑗
= 𝐺𝑖 −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+
𝜕(−𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
+ 𝜈

𝜕2𝑈𝑗

𝜕𝑥𝑗𝜕𝑥𝑗
 

  
(2) 

Where, 𝑈𝑖is the velocity component in the  𝑥𝑖 Cartesian direction, 𝜌represent the fluid 

density, 𝑝denotes the pressure and 𝜈corresponds to the kinematic viscosity. On the right-hand 

side of the equation 2, 𝐺𝑖symbolizes the gravitational force per unit volume of the fluid. The 

term −𝑢𝑖𝑢𝑗 is the Reynolds stress tensor, which is modeled in this software using the Non-linear 

k-ε turbulence model, as described by equation 3.  
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−𝑢𝑖𝑢𝑗 = 𝜈𝑡𝑆𝑖𝑗 −
2

3
𝑘𝛿𝑖𝑗 −

𝑘

휀
𝜈𝑡 [𝛼1(𝑆𝑖𝑙𝛺𝑙𝑗 + 𝑆𝑗𝑙𝛺𝑙𝑖) + 𝛼2 (𝑆𝑖𝑙𝑆𝑙𝑗 −

1

3
𝑆𝑘𝑚𝑆𝑚𝑘𝑆𝑖𝑗)] 

+𝛼3 (𝛺𝑖𝑙𝛺𝑙𝑗 −
1

3
𝛺𝑘𝑚𝛺𝑚𝑘𝛿𝑖𝑗)] 

(3) 

 

Where, 𝜈𝑡denotes the eddy viscosity, 𝑘 corresponds to turbulent kinetic energy and 휀is the 

dissipation rate of the turbulent energy. The tensors 𝑆𝑖𝑗and 𝛺𝑖𝑗 are the mean- rotation and mean- 

strain- rate tensors, respectively defined by: 

 

𝑆𝑖𝑗 =
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
 

        
(4) 

𝛺𝑖𝑗 =
𝜕𝑈𝑖
𝜕𝑥𝑗

−
𝜕𝑈𝑗

𝜕𝑥𝑖
 

       
(5) 

𝛼1, 𝛼2and 𝛼3are turbulence model parameters and they are determined based on relationships 

involving S and 𝛺, as outlined in equations 6-11.  

 

𝛼1 = −0.1325𝑓𝑀, 𝛼2 = 0.0675𝑓𝑀, 𝛼3 = −0.0675𝑓𝑀 
      

(6) 

𝑓𝑀 = (1 +𝑚𝑑𝑠𝑆
2 +𝑚𝑑𝛺𝛺

2)−1 
      

(7) 

𝐶𝜇 =
𝑐𝜇𝑜(1 + 𝑐𝑛𝑠𝑆

2 + 𝑐𝑛𝛺𝛺
2)

𝐷𝜇
 (8) 

𝐷𝜇 = 1 + 𝑐𝑑𝑠𝑆
2 + 𝑐𝑑𝛺𝛺

2 + 𝑐𝑑𝑠𝛺𝑆𝛺 + 𝑐𝑑𝑠1𝑆
4 + 𝑐𝑑𝛺1𝛺

4 + 𝑐𝑑𝑠𝛺1𝑆
2𝛺2 (9) 

𝑆 =
𝑘

휀
√
1

2
𝑆𝑖𝑗𝑆𝑖𝑗 

     
(10) 

𝛺 =
𝑘

휀
√
1

2
𝛺𝑖𝑗𝛺𝑖𝑗 

     
(11) 

The constant values for the above equations are provided in the software manual.           
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2.3. Soft Computing method 
Artificial Neural Networks (ANNs), with their exceptional capability to discern patterns from 

complex and ambiguous data, can be utilized to uncover intricate methods that are challenging 

for humans and other computer techniques to comprehend. A trained neural network can be 

viewed as an expert in the information provided for analysis. The applications of this method in 

hydraulic engineering encompass predicting river floods, forecasting water quality parameters, 

and estimating the length of hydraulic jumps and friction coefficients in open smooth channels. 

The data in artificial neural networks is typically categorized into two groups: Training data, 

which is used to educate the network (comprising approximately 70 to 80 percent of the data), 

and Testing data, which serves as the primary benchmark for evaluating the proximity of 

predicted values to actual data (encompassing about 20 to 30 percent of the data). The steps 

involved in simulating artificial neural networks are as follows: 

1. Collecting a sufficient set of inputs and outputs of the desired model (wherein data is 

generated by a numerical model, laboratory model, or real system measurements); 

2. Selecting a suitable number of input-output sets as the training set, with the remainder 

designated as the test set. The artificial neural network model is then trained using the 

training set, involving the calculation of the model's parameters, i.e., weights and biases; 

3. Entering the inputs of the training set into the designed artificial neural network with the 

parameters obtained from the previous step, and recording the calculated outputs; 

4. Comparing the calculated outputs from the previous step with the real outputs, and 

recording the difference as the model's error; 

5. Determining the calculated error for different ratios of training and test values; 

6. Selecting an appropriate number of training sets by comparing the obtained values, and 

recording the final network parameters based on these values; 

7. Continuing the algorithm by adjusting the network architecture until achieving a 

network with the lowest error. 

During the network training process, the mean square error (MSE) between computed and 

observed values (as depicted in equation 12) serves as the fitness function, guiding the network 

training to minimize this error. In this equation, the results obtained from the artificial neural 

network (ANN) are denoted as "Numerical," while the laboratory results are represented as 

"Observed." Ultimately, a low MSE signifies high accuracy of this method. 

 

𝑀𝑆𝐸 =
∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 −𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑖)

2𝑛
𝑖=1

𝑛
 

   
(12) 

In the above relation, n represents the number of data. The structure of artificial neural 

networks is presented in Figure 2, which may be single-layer or multi-layer. 
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Figure 2. Structure of the MLP-ANN method. 

 

3. Model Development 

3.1. Numerical modeling in iRIC (NaysCUBE) software 
A three-dimensional model was created to simulate a 11-meter-long and 1-meter-wide 

channel with a perpendicular groyne extending from the right channel wall into the main stream, 

measuring 15 cm in length and 1 cm in thickness. The groyne was treated as an obstruction.  

The domain was discretized using cartesian mesh. The mesh independency test, conducted using 

the grid convergence index (GCI) method suggested that the optimum number of grids are (450 

× 50 × 15) in the x, y, and z directions, respectively [36]. 

A Manning coefficient of 0.01 was uniformly applied to the channel bed and side walls. At 

the western boundary of the computational domain (the inlet boundary), a constant discharge 

Q=60 l.s-1 is imposed. The downstream boundary of the domain is defined as a constant water 

depth of 125 mm, which maintains the inlet water depth at 143 mm. 

The model utilized the upwind numerical discretization method and employed the non-linear 

k-ε two-equation model for turbulence modeling. The depicted model can be seen in Figure 3, 

with points P1 and P2 serving as monitor points for overseeing the convergence of the numerical 

simulation. 

 
Figure 3. Computational domain in the CFD model (iRIC NaysCUBE model). Points P1 and P2 are 

monitor points. 
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3.1.1 Convergence control of numerical solution 
The numerical model underwent analysis using a time step of 0.008 seconds over a duration 

of approximately 40 seconds. Figure 4 illustrates the temporal changes in velocity magnitude at 

two monitoring points, P1 and P2, situated near the channel bed and downstream of the groyne 

head. As shown in the figure, the solution has successfully reached complete convergence, with 

the velocity magnitude and other parameters stabilizing at constant values. The monitoring point 

locations are highlighted in Figure 3, with Point 1 positioned at X/L=1 and Y/L=2, and Point 2 at 

X/L=3 and Y/L=3. 

 
Figure 4. Numerical solution convergence for velocity-magnitude in points P1 and P2. 

 

3.2. ANN modeling in MATLAB software 
An artificial neural network was developed and trained using measured data within the 

MATLAB 2018b software. Following this, a testing phase was carried out using specific test 

numbers. The data division for testing and training was executed in the MATLAB code at a ratio 

of 20% for testing and 80% for training, with a random allocation process. 

The input parameters in this setup included the Froude number (Fr=0.35), groyne length 

(L=120, 150, and 200mm), and spatial coordinates (X, Y, Z). The artificial neural network 

method considered the longitudinal, transverse, vertical components, and velocity magnitude (u, 

v, w, vel-mag) as the outputs. All input and output parameters were normalized by the groyne 

width (B) and input bulk velocity (Uin). Subsequently, the input parameters were dimensionless, 

represented as (X*=X/B, Y*=Y/B, Z*=Z/B, Fr, L/B), while the output parameters were 

normalized as (u*=u/Uin, v*=v/Uin, w*=w/Uin, vel-mag*=vel-mag/Uin). 

For simulating the significant flow characteristics, the Multilayer Perceptron Method (MLP) 

was employed, featuring 24 hidden layers and 30 neurons in each layer. 

 

4. Validation of the ANN and CFD Models 
Figures 5 and 6 illustrate the comparison of the cross-sectional profiles of the three velocity 

components (u,v and w) and the velocity magnitude (vel-mag) in the planes close to the bed 

(Z=4mm) and close to the water surface (Z=81mm). A thorough examination of these figures 

distinctly shows the strong predictive accuracy of the Artificial Neural Network (ANN) 

approach for the velocity components on both planes. 

The analysis of the longitudinal velocity component profile reveals a noticeable discrepancy 

between the simulated data from the Computational Fluid Dynamics (CFD) method and the 

actual measurements, particularly evident along the shear layer in both profiles compared to 

other regions. Specifically, the behavior of the Artificial Neural Network (ANN) method and the 

measured data shows fluctuations along the shear layer and at the flow separation boundary, in 

contrast to the consistent velocity increase from the channel's right wall towards the flow center 

observed in the CFD method velocity profiles. 
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The examination of the transverse velocity component in both profiles indicates a rise in this 

component near the groyne head. Assessing the velocity increase in this area is crucial for 

understanding local scour and groyne stability. Both forecasting approaches provide reasonably 

accurate results with lower values, but the precision of the Artificial Neural Network (ANN) 

method exceeds that of the Computational Fluid Dynamics (CFD) method. In figure 5-D, the 

velocity magnitude values obtained from simulations using both the ANN and CFD methods are 

compared with actual data near the bed. It is clear that the CFD method, which has limitations in 

predicting the longitudinal and transverse velocity components, also exhibits a diminished 

capability in this aspect compared to the ANN method. 

 

4.1. Performance evaluation statistics 
The assessment of the accuracy of the Artificial Neural Network (ANN) and Computational 

Fluid Dynamics (CFD) methods in predicting the flow field around a single straight groyne has 

been conducted utilizing statistical indices comprising five parameters: root mean squared error 

(RMSE), mean absolute error (MAE), absolute deviation percent (δ), standard error prediction 

percent (SEP), and correlation coefficient (R). The equations for these parameters are provided 

below: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑖 − 𝑜𝑖)

2𝑁
𝑖=1

𝑁
 (13) 

𝑅 =
∑ (𝑜𝑖 − �̄�)(𝑒𝑖 − �̄�)𝑛
𝑖=1

√∑ (𝑜𝑖 − �̄�)2∑ (𝑒𝑖 − �̄�)2𝑛
𝑖=1

𝑛
𝑖=1

                                         (14) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑒𝑖 − 𝑜𝑖|

𝑁

𝑖=1

 (15) 

𝛿% =
∑ |(𝑒𝑖 − 𝑜𝑖)|
𝑛
𝑖=1

∑ 𝑒𝑖
𝑛
𝑖=1

× 100 (16) 

𝑆𝐸𝑃% =
100

�̄�
× 𝑅𝑀𝑆𝐸 (17) 

 

In this equation, "ei" represents the predicted data, "oi" represents the measured data, �̄� is the 

average of the predicted data, "�̄�" is the average of the measured data, and "N" is the total 

number of data points. 
The lower values of the RMSE, MAE, δ, and SEP parameters, along with the higher values of 

the R parameter, indicate superior model performance. RMSE provides the standard deviation of 

the residuals, while MAE calculates the mean absolute residuals. These parameters offer the 

advantage of producing error values in the same unit as the model output, providing a reliable 

representation of the model's performance. Additionally, the δ and SEP methods yield 

dimensionless error values that are suitable for comparing cases with different scales. The R 

parameter indicates the linear correlation coefficient between two parameters, approaching 1 for 

accurate prediction and 0 for poor performance. 

The quantitative assessment results of the u, v, w, and velocity-magnitude components by 

both methods are displayed in Table 2. Based on the data presented, the ANN method, 

characterized by lower RMSE values, exhibits superior predictive performance compared to the 

CFD method for parameters u, v, and velocity magnitude. 
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Table 2: Quantitative Results of Component Prediction u ،v ،w & vel-mag 

Prediction  

Parameters 
Prediction  

method 
RMSE MAE δ% SEP% R-square 

u 
CFD 0.0999 0.0774 21.0200 27.1407 0.8332 

ANN 0.0664 0.0398 10.8208 18.0445 0.9152 

v 
CFD 0.0430 0.0337 46.0656 58.7075 0.8726 

ANN 0.0269 0.0189 25.7683 36.6755 0.9150 

w 
CFD 0.0152 0.0104 429.1606 630.7778 0.5985 

ANN 0.0194 0.0076 316.0246 804.3308 0.2474 

vel-mag 
CFD 0.0987 0.0746 18.7322 24.7845 0.8051 

ANN 0.0536 0.0390 9.7786 13.4531 0.9315 

 

Figure 7 displays scatter plots of the parameters u, v, w, and vel-mag obtained from modeling 

using the ANN and CFD methods. In this representation, the measured data is depicted on the 

horizontal axis, while the predicted values by both methods are shown on the vertical axis. The 

plots reveal that the ANN method showcases a more uniformly distributed pattern of the 

mentioned parameters around the y=x line, indicating a heightened level of accuracy associated 

with this method. 
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(a
) 

 

(b
) 

 

(c
) 

 

(d
) 

 
Figure 5. Comparative analysis of the experimental data, CFD modelling results, and ANN 

predictions in near-bed layer for different velocity components: (a) longitudinal velocity, (b) 

transverse velocity, (c) vertical velocity and (d) velocity magnitude. 
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(a
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) 

 

(c
) 

 

(d
) 

Figure 6. Comparative analysis of the experimental data, CFD modelling results, and ANN 

predictions in near-water surface layer for different velocity components: (a) longitudinal velocity, 

(b) transverse velocity, (c) vertical velocity and (d) velocity magnitude. 
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(a) (b) 

  
(c) (d) 

Figure 7 Comparison between the CFD and ANN study results with measured data in velocity 

scatter plots for different components: (a) u, (b) v, (c) w, and (d) velocity magnitude (vel-mag). 

 

5. 2D and 3D flow features predicted by ANN and CFD methods 
Figure 8 demonstrates the flow structure downstream of a single groyne, highlighting a 

discernible separation zone within the flow domain. While both the Artificial Neural Network 

(ANN) and Computational Fluid Dynamics (CFD) methodologies have offered predictions for 

the overall flow structure, the 3D flow pattern within the separation area, as anticipated by the 

ANN, closely resembles the actual experimental flow field. The streamlines depicted for the 

experimental flow and ANN indicate a downstream migration of the core circulation zone from 

the near-bed plane to the upper planes, whereas the vortex region centroids in the CFD 

simulation are approximately oriented vertically. 

Figure 9 displays the 2D velocity vectors near the water surface. In both methods, towards 

the upper region of the field and distanced from the groyne structure, the vectors are notably 

parallel and aligned along the channel's sidewalls. As they approach the groyne, they gradually 

diverge and tilt towards the channel's central section. The ANN method accurately predicts the 

behavior of these velocity vectors, whereas the CFD method shows more deviation in the upper 

part of the groyne. In Figure 9a, it is evident that the length of the circulation zone is 

approximately 12 times the length of the groyne in the ANN prediction, while in the CFD 

prediction, this length reduces to around 10.2 times the groyne length, indicating a discrepancy 

between the measured data and CFD prediction. 
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In the CFD method, the center of the circulation zone is positioned closer to the groyne body 

than observed in the experimental results. On the other hand, the ANN method accurately 

forecasts the center's location. While both methods successfully predict the main flow 

phenomena within the field, the ANN method outperforms in modeling the precise location of 

these phenomena with higher accuracy. 

To explore the 3D flow structure, secondary flows at different sections both upstream and 

downstream of the groyne are illustrated in Figure 10 (on the right side). When examining the 

figures in the upstream region of the groyne, primary flows exhibit a unidirectional transverse 

flow from the right wall of the channel to the opposite wall, a prominent pattern observed in both 

of the CFD and ANN methods. As the flow approaches the groyne section, the initial 

unidirectional transverse flows transition into rotational flows within the section, forming a 

clockwise secondary cell (A) in the separation zone at cross-section X/L=2. This flow pattern is 

clearly visible in Figure 10-b (on the right side) using the CFD method, while the ANN method 

also predicts this phenomenon, albeit with lower values. This flow progresses along the channel 

towards the water surface and eventually dissipates at cross-section X/L=14. In the CFD method, 

the rotational flow (A) extends to cross-section X/L=8, whereas the ANN method extends this 

flow up to cross-section X/L=14. Additionally, a significant upward flow emerges along the 

right channel wall, supported by both measured and ANN data. Remarkably, this flow 

characteristic was not predicted by the CFD method. 

An additional rotational flow (B), characterized by a counterclockwise rotation distinct from 

the previously mentioned rotational flow, is observed in the relevant figure of the experimental 

results. As depicted in Figure 10, this type of flow has been accurately predicted by the ANN 

method, in contrast to the CFD method. The centers of these two rotational zones are spatially 

separated along the length of the field, a distinguishing feature that is clearly observable in the 

ANN method's predictions. 

At cross-sections X/L=14 and 17, corner vortices emerge at the junction of the right channel 

wall and the bed, forming a rotational flow labeled as C in the experimental results. Surprisingly, 

this phenomenon was not anticipated by either the CFD or ANN method. 
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Figure 8. Visualization of 3D streamlines around a straight groyne showing: (a) Experimental 

results, (b) CFD simulation, and (c) ANN prediction. 
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Figure 9. Representation of 2D Velocity Vectors in the plane near the water surface illustrating: (a) 

Experimental results, (b) CFD simulation, and (c) ANN prediction. 

 

For a more accurate assessment of the flow field predictions made by the ANN and CFD 

methods, contour plots displaying the velocity magnitude distribution within different cross-

sections in Figure 10 (left side) are included to facilitate an in-depth analysis. 

A comparison of velocity contours between the measured data and results from both methods 

at cross-sections X/L=-2 and -4 indicates a consistent flow pattern with an approximate velocity 

of 0.42 m/s. Both the ANN and CFD methods demonstrate similarities to the experimental flow. 

Experimental results display an increase in velocity in the groyne section and the main flow 

channel, reaching around 0.55 m/s, a trend accurately captured by both methods. However, the 

CFD method shows slightly lower values. Beyond the groyne section, two distinct areas of 

intensified velocity emerge. One area corresponds to the flow core's velocity increase due to 

flow constriction, leading to a general velocity amplification, while the other area relates to 

localized velocity intensification downstream of the groyne and near the shear layer, displaying 

higher velocities than the previous high-velocity region. The CFD method fails to predict these 

two areas, although it anticipates the high-velocity region. Conversely, the ANN method does 

not differentiate between these two zones. 

As we move downstream, the impact of the groyne gradually diminishes along the shear 

layer, and the heightened-velocity region gradually fades away. In the experimental results, 

beyond X/L=11, this region completely vanishes, giving way to a gradual velocity increase 
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towards the channel center up to the final section. This flow behavior has been precisely 

forecasted by the ANN method. The CFD method similarly illustrates this flow trend, albeit with 

slightly lower values. 

Figure 11 displays the distribution of the vertical velocity component and secondary flow 

structures in cross-sections perpendicular to the horseshoe vortex's path. In Figure 11-a 

(experimental data), within the upstream area of the groyne head, the contours of the vertical 

component and velocity vectors reveal a juxtaposition of upward (positive flow) and downward 

vertical flows, indicating the presence of the horseshoe vortex with its peak intensity in this 

region. The clockwise and counterclockwise rotational zones (secondary flows) mentioned 

earlier are clearly visible in these sections, with their size expanding but their strength 

diminishing downstream, indicating the weakening of the horseshoe vortex along this trajectory. 

The delineated lines along the shear layer formation highlight the appearance of the horseshoe 

vortex in between. Both the CFD and ANN methods capture the downward vertical flow in the 

upstream groyne region, with varying magnitudes, the ANN method demonstrating higher 

accuracy. While both methods predict positive vertical component values, they do so at lower 

levels. The secondary flows around the groyne head are evident in both methods, but unlike the 

experimental findings, they wane along the trajectory. 

In Figure 12 depicting streamlines at the XZ plane upstream of a single groyne (Y/L=0.3), a 

color contour plot of the w-velocity is included. The streamlines in the experimental figure 

exhibit characteristics of the near-bed Horseshoe Vortex (HSV) in the proximity of the upstream 

face of the groyne. The separation of the bed boundary layer and the rolling up of the incoming 

flow due to the reversed flow at the groyne's base are prominently highlighted. The 2D HSV 

forecasted by the CFD method aligns reasonably well with the observed HSV structure, but 

disparities exist in the location of formation and the magnitude of the HSV compared to the 

laboratory data. The ANN method also predicts this phenomenon with a lesser degree of 

approximation. 
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Figure 10. Comparison of the velocity magnitude and secondary flows in various cross sections 

around a straight groyne between experimental results, CFD simulation and ANN prediction. 

 

 

 



Comparative Assessment of the Computational Fluid Dynamics and … 

 
SUMMER 2024, Vol 10, No 4, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

21 

 

 
 

Figure 11. Comparison of the structure of the secondary flows in sections perpendicular to the 

horseshoe vortex path using: (a) experimental data, (b) CFD simulation, and (c) ANN prediction. 
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Figure 12. Comparison of the velocity vectors at Y/L=0.3 plane, upstream of the tested groyne 

between Experimental results, CFD simulation & ANN prediction (the contours depict the 

distribution of the w velocity component). 

 

6. Conclusion 
In this investigation, the 3D flow field around a single straight groyne was analyzed using 

Computational Fluid Dynamics (CFD) and Artificial Neural Network (ANN) methods. The 

ANN model incorporated dimensionless parameters X*, Y*, Z*, Froude number (Fr), and 

groyne length L* as inputs. The accuracy of the ANN model in predicting velocity component 

profiles and velocity magnitudes on near-bed and free surface planes was assessed against 

experimental data (Safarzadeh, 2010). The CFD analyses were conducted with the iRIC model 

using the nonlinear k-ε turbulence model to close the Reynolds-Averaged Navier-Stokes 

(RANS) equations. 

The quantitative evaluation findings indicated that the ANN method excelled over the CFD 

method in forecasting the longitudinal (u), transverse (v), and velocity magnitude parameters, 



Comparative Assessment of the Computational Fluid Dynamics and … 

 
SUMMER 2024, Vol 10, No 4, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

23 

demonstrating lower Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and higher 

R-values. Conversely, the CFD method displayed notable discrepancies from the experimental 

data, especially in the near-bed zones. 

The examination of transverse velocity profiles indicated that the ANN method successfully 

represented the changes in velocity components and magnitude across the shear layer and at the 

flow separation boundary. In contrast, the CFD method exhibited a consistent rise from the 

channel wall towards the main flow zone, deviating from the expected behavior observed in the 

ANN model. 

Upon further analysis of streamlines and velocity vectors, it was observed that the CFD 

method underestimated the length of the recirculation zone, in contrast to the precise prediction 

made by the ANN method. 

The analysis of 2D and 3D contour and velocity vector plots highlighted the ANN method's 

capability to reasonably predict important flow characteristics such as the horseshoe vortex 

around the groyne head in the lower layers, secondary flows in sections downstream of the 

groyne, and velocity amplification at the outer boundary of the recirculation zone. Conversely, 

the CFD method exhibited deficiencies in accurately representing these phenomena in certain 

instances. 

In summary, the findings suggest that the ANN method offers a more reliable and precise 

forecast of the intricate 3D flow field around a single straight groyne when compared to the CFD 

method. This underscores the potential of data-driven approaches such as ANN in tackling 

complex fluid dynamics issues that present challenges for conventional numerical simulations. 

The outcomes of this research have the potential to enhance the comprehension and simulation 

of flow around river structures, with implications for river engineering and hydraulic design 

practices. 
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