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Abstract 
In the study of natural waterways, the use of formulas such as Manning's equation is prevalent 

for analyzing flow structure characteristics. Typically, floodplains exhibit greater roughness 

compared to the main river channel, which results in higher flow velocities within the main 

channel. This difference in velocity can lead to increased sedimentation potential within the 

floodplains. Therefore, accurately determining Manning's roughness coefficient for compound 

channels, particularly during flood events, is of significant interest to researchers. This study 

aims to model the Manning roughness coefficient in compound channels with both converging 

and diverging floodplains using advanced soft computing techniques. These techniques include a 

multi-layer artificial neural network (MLPNN), Group Method of Data Handling (GMDH), and 

the Neuro-Fuzzy Group Method of Data Handling (NF-GMDH). For the analysis, a dataset from 

196 laboratory experiments was used, which was divided into training and testing subsets. Input 

variables included parameters such as longitudinal slope (𝑆𝑜), relative hydraulic radius (𝑅𝑟), 

relative depth (𝐷𝑟), relative dimension of flow aspects (𝛿∗), and the convergent or divergent 

angle (θ) of the floodplain. The relative Manning roughness coefficient (𝑛𝑟) was the output 

variable of interest. The results of the study showed that all the models performed well, with the 

MLPNN model achieving the highest accuracy, characterized by R² = 0.99, RMSE = 0.001, SI = 

0.0015, and DDR = 0.0233 during the testing phase. Further analysis of the soft computing 

models indicated that the most critical parameters influencing the results were 𝑆𝑜, 𝑅𝑟, 𝐷𝑟, 𝛿∗, 

and θ. These findings highlight the effectiveness of soft computing techniques in accurately 

modeling the Manning roughness coefficient in complex channel conditions and provide 

valuable insights for future research and practical applications in the management of flood 

events and waterway analysis. 
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Notation 
nr Relative Manning's Roughness Coefficient  

GMDH Group Method of Data Handling 

NF-GMDH Neuro-Fuzzy Group Method of Data Handling 

MLPNN Multilayer Perceptron Neural Networks 

Dr relative flow depth 

𝑅𝑟 relative hydraulic radius 

𝛿∗ relative dimension of the flow aspects 

θ angle of divergence and convergence of the section 

𝑆𝑜 longitudinal slope 

R2 Coefficient of Determination 

DDR Developed Discrepancy Ratio   
RMSE Root mean square error 

 

1. Introduction 

1.1. Background and Significance of Compound Channel Analysis 
One of the central topics in hydraulic engineering has consistently been the analysis of river 

flow characteristics. As rivers traverse various terrains, including flat plains and mountainous 

regions, their cross-sectional profiles undergo significant changes [1]. Typically, rivers 

experience unsteady flow conditions. Furthermore, floods contribute to irregular and non-

uniform flow patterns. These challenges are compounded by the meandering nature of rivers, 

particularly in plains where numerous bends are present. In contemporary river hydraulic 

modeling, the compound channel approach is employed, considering both the floodplain and the 

main channel [2]. Notably, the floodplain generally exhibits a lower flow velocity compared to 

the main channel, resulting in sediment deposition that increases the roughness of the floodplain 

relative to the main channel [3]. The most common metric for describing river discharge is the 

water level flowing through the river. A key component of river flow studies is the accurate 

prediction of discharge. During flooding events, rivers may overflow their banks, causing 

damage to areas beyond the floodplain. Precise discharge capacity calculations are essential for 

the construction, management, and maintenance of open channels, as well as for flood prediction 

efforts [2]. Consequently, techniques for accurately determining the discharge capacity of 

channels are vital for effective flood control. Accurate discharge predictions for open channels 

necessitate reliable roughness coefficient estimates. The Manning, Chezy, and Darcy-Weisbach 

equations are traditionally used to estimate discharge in uniform flow conditions within simple, 

non-prismatic compound channels. These methods were originally developed for basic channels 

to ascertain the roughness coefficient of the bed material [4]. However, in non-prismatic 

channels, bed roughness, geometric configurations, and hydraulic properties significantly 

influence the roughness coefficients. Therefore, a model to predict roughness coefficients is 

derived by incorporating these variables [2]. 

In open channel flow, Manning's formula is the most widely used approach due to its 

simplicity and practicality. Manning's formula, however, must be used with appropriate caution 

when applied to non-uniform compound channels. To accurately represent the boundary's real or 

effective variation, as Yen [5] proposed for simple uniform flows, Manning's n is considered a 

roughness factor that quantifies the roughness in terms of a geometric measure. The calculation 

of the roughness coefficient in compound channels is complicated by various hydraulic factors. 

Numerous techniques exist for determining a channel's roughness coefficient, including using 
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tables, photographs, and mathematical formulas. While traditional methods may provide 

satisfactory results for simple channels, they often fail for more complex sections, particularly 

non-prismatic compound channels. As a result, there is a growing preference for soft computing 

methods to calculate Manning's coefficient due to their ability to handle complex hydraulic 

conditions [6]. 

 

1.2. Advances in Soft Computing Techniques 
Researchers are increasingly turning to soft computing methods to model and estimate 

hydraulic flow parameters, especially in compound open channels with non-prismatic 

floodplains, because of the limited accuracy of numerical models and conventional techniques 

[7–11]. The complexity of non-prismatic channels requires sophisticated models to predict flow 

characteristics accurately. In compound channels with prismatic floodplains, various advanced 

methods have been employed to predict flow discharge. These include artificial neural networks 

[2], which simulate the flow dynamics based on learning from data, and fuzzy adaptive neural 

network models [12,13], which incorporate fuzzy logic to handle uncertainties in the flow 

parameters. Additionally, multivariate adaptive regression splines (MARS) [14] provide a 

flexible modeling approach that captures nonlinear relationships in the data, and gene expression 

programming [15], a type of evolutionary algorithm, has been used to develop predictive models 

based on natural selection principles. The MARS model, in particular, has been effectively 

utilized to predict discharge in meandering open channels [16], demonstrating its capability to 

manage complex flow patterns. 

 

1.3. Gap in Research and Study Objective 
Despite these advancements, there is a noticeable gap in research regarding the estimation of 

Manning's roughness coefficient in non-prismatic compound channels with converging and 

diverging floodplains using soft computing methods. The unique hydraulic characteristics of 

these channels, including variations in cross-sectional geometry and flow patterns, pose 

significant challenges for traditional modeling approaches. Therefore, this study focuses on 

developing advanced soft computing models, specifically Group Method of Data Handling 

(GMDH), Neuro-Fuzzy GMDH (NF-GMDH), and Multi-Layer Perceptron Neural Networks 

(MLPNN), to estimate the relative Manning's roughness coefficient (nr) in such channels. These 

models are designed to capture the complex interactions between hydraulic and geometric 

parameters, providing more accurate and reliable estimates of roughness coefficients. The 

GMDH algorithm is a self-organizing method that constructs models by iteratively selecting the 

best combination of input variables, making it well-suited for handling complex datasets. The 

NF-GMDH model combines the strengths of fuzzy logic and GMDH, enabling it to manage 

uncertainty and imprecision in the data while constructing accurate predictive models. MLPNN, 

a type of artificial neural network, consists of multiple layers of interconnected neurons that 

learn to represent the underlying patterns in the data through training. By leveraging these 

advanced soft computing techniques, the study aims to address the limitations of traditional 

methods and provide a robust framework for predicting Manning's roughness coefficient in non-

prismatic compound channels. The development and validation of these models involve 

comprehensive data collection and analysis, ensuring that the models are capable of generalizing 

across different hydraulic conditions and channel configurations. This research not only 

contributes to the field of hydraulic engineering by enhancing the accuracy of flow predictions 

but also supports flood management and channel design by providing reliable tools for 

estimating channel roughness under complex flow conditions. 
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1.4. Contribution to the Field 
This study introduces the application of advanced soft computing models, including GMDH, 

NF-GMDH, and MLPNN, for predicting Manning's roughness coefficient in complex compound 

channels with converging and diverging floodplains. While previous research has primarily 

focused on simpler or prismatic channels, this work addresses the challenges presented by non-

prismatic geometries. By leveraging these advanced models, the accuracy and reliability of 

roughness coefficient predictions in such channels can be significantly enhanced. This research 

contributes to the field by providing a novel methodological framework that can be utilized for 

improved flood management and channel design, thus advancing the current understanding and 

capabilities in hydraulic engineering. 

 

2. Materials and Methods 
The dataset employed for estimating the nr using soft computing models comprises 196 

experimental data sets that focus on converging and diverging compound channels. These data 

sets have been gathered from several published papers, specifically those authored by Bousmar 

[17], Bousmar et al. [18], Rezaei [19], Yonesi et al. [20], and Naik and Khatua [21]. This 

collection of data, which is summarized in Table (1), was compiled by Das et al. The discussion 

in this section covers several key aspects: it outlines the significant parameters, details both the 

input and output variables, and provides a comprehensive overview of the soft computing 

models that have been utilized. Furthermore, it delves into the modeling strategies that were 

employed as well as the criteria used for evaluation. An illustrative view of the non-prismatic 

compound channel with various converging geometries is provided in Figure (1). 

 

 
Figure 1. A view of the compound channel with non-prismatic floodplains a)  =11.3º and b) 

 = º [22] 
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The Manning roughness coefficient in this study is determined through the analysis of five 

critical input parameters: 

1. Longitudinal slope (𝑺𝒐): This represents the gradient of the channel along its length. 

2. Relative Hydraulic radius (Rr): This is the ratio of the hydraulic radius to a reference 

value. 

3. Relative flow depth (Dr): This denotes the ratio of the flow depth to a reference depth. 

4. Relative dimension of the flow aspects (δ*): This parameter reflects the proportion of 

certain flow characteristics relative to a reference dimension. 

5. Convergence or divergence angle (θ): This measures the angle of the floodplain, with a 

positive sign indicating a convergence angle and a negative sign indicating a divergence 

angle. 

 

By analyzing these parameters, the research aims to accurately determine the Manning 

roughness coefficient, which is crucial for understanding and modeling flow behavior in 

compound channels. 

Through the careful analysis of these parameters, this research endeavors to precisely 

determine the Manning roughness coefficient. This coefficient is essential for comprehending 

and accurately modeling the flow behavior in compound channels. The research focuses on the 

relative Manning roughness coefficient of the flow, denoted as 𝑛𝑟, which was selected as the 

primary output variable. This coefficient 𝑛𝑟 is defined as the ratio of the Manning roughness 

coefficient in the main channel (𝑛𝑚𝑐) to the Manning roughness coefficient in the floodplain 

( 𝑛𝑓𝑝 ). Mathematically, this relationship is expressed as 𝑛𝑟 =
𝑛𝑚𝑐

𝑛𝑓𝑝
. The aforementioned 

parameters can be encapsulated within a functional relationship, which is articulated in Eq. (1). 

 

( )*

0 , , , ,r r rn f S R D  =  (1) 

 

Table 1 provides a comprehensive summary of the statistical analysis conducted on the 

various parameters that were employed to determine the relative Manning roughness coefficient 

within compound channels. These channels are characterized by floodplains that either converge 

or diverge. The analysis meticulously examines each parameter's influence and how they 

collectively contribute to the accurate calculation of the roughness coefficient, offering a detailed 

insight into the hydraulic behavior of such complex channel systems. 
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Table 1- Range of collected data set and Statistical analysis of  

parameters involved in determining nr 

Source Range S0*10-3 Rr 𝑫𝒓 𝜹∗ 𝜽 𝒏𝒓 

Rezaei [15] 

max 

2.003 

4.590 0.522 6.540 

-3.81 

0.830 

min 0.869 0.114 0.905 0.070 

st div 1.219 0.143 1.940 0.278 

avg 2.505 0.305 4.313 0.591 

median 2.610 0.348 5.150 0.719 

Bousmar [13] 

max 

0.9 

4.400 0.538 6.360 

-11.3 

-3.81 

0.837 

min 0.591 0.101 0.808 0.059 

st div 1.185 0.161 1.831 0.295 

avg 2.248 0.345 3.980 0.605 

median 2.392 0.416 4.585 0.747 

Bousmar et al [14] 

max 

0.9 

4.200 0.539 6.290 

5.71 

3.81 

0.832 

min 0.561 0.102 0.819 0.052 

st div 1.187 0.152 1.926 0.289 

avg 2.361 0.321 4.166 0.592 

median 2.663 0.347 4.931 0.722 

Yonesi et al [16] 

max 

0.88 

35.090 0.364 1.900 

11.31 

3.81 

0.806 

min 1.910 0.103 0.229 0.143 

st div 10.046 0.096 0.622 0.236 

avg 10.192 0.224 1.373 0.482 

median 6.600 0.252 1.656 0.552 

Naik & Khatua [17] 

 

max 

1.1 

7.260 0.325 4.450 

-13.38 

-5 

0.716 

min 0.850 0.059 0.293 0.047 

st div 1.849 0.094 1.489 0.248 

avg 3.604 0.199 3.138 0.519 

median 3.595 0.227 3.795 0.634 

 

2.1. Soft Computing Techniques 

2.1.1. Group Method of Data Handling (GMDH) 
The GMDH (Group Method of Data Handling) model, originally developed by Ivakhnenko 

[23] in the 1960s, has since been widely applied and refined in various fields, including 

hydraulic engineering. This model's ability to construct self-organizing networks makes it 

particularly suitable for handling complex datasets. The GMDH model is a sophisticated type of 

neural network that includes an input layer consisting of various variables and parameters, 

several intermediate layers, and an output layer. This model improves the precision of 

forecasting physical phenomena by incorporating optimization methods and approximation 

techniques into its framework. The connections between a system's input and output parameters 

in this neural network can be described through Volterra function series, which are similar to the 

discretized polynomial proposed by Kolmogorov-Gabor, as illustrated in the subsequent 

equation. 
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(2) 

 

where x0, x1, x2, …, xm is input vectors, and a0, a1, a2, …, am is the vector of weight 

coefficients. In the GMDH structure, every neuron requires at least two inputs. The relationship 

between the variables influencing both input and output in each neuron is represented by a 

stimulus function, which can be linear or non-linear. The fundamental structure of the GMDH 

model is represented by the following formula involving quadratic polynomials with two input 

variables [24]. 

 
2 2

0 1 1 2 2 3 1 4 2 5 1 2y w w x w x w x w x w x x= + + + + +  (3) 

 

Where in 0 1 5, , ,w w w  coefficients are polynomials. To construct the GMDH network, 

begin by considering binary combinations of the input parameters. Next, calculate the weight 

coefficients and corresponding error values for each neuron using the least squares method. An 

error criterion is then applied at each layer to select the optimal neurons based on classification 

features. 

 

( )
2

1

1
i i

n

obs prd

i

E y y
n =

= −  (4) 

 

iobsy  and 
iprdy  include observed and calculated values obtained from the numerical 

model, respectively. E and n denote the number of observational data points and the calculation 

error in each neuron (partial descriptor), respectively. The structure of the developed GMDH 

model can be observed in Figure 2. 

 

 
Figure 2. illustrates the structure of the GMDH network designed for estimating the relative 

Manning roughness coefficient in compound channels featuring converging and diverging 

floodplains. 
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2.1.2. Development of the NF-GMDH model 

2.1.2.1. Neuro-Fuzzy Group method of data handling (NF-GMDH) 
The Neuro-Fuzzy Group Method of Data Handling (NF-GMDH) model is an advanced soft 

computing technique that synergistically combines the principles of fuzzy logic with the self-

organizing capabilities of the GMDH algorithm. This approach is particularly advantageous in 

modeling complex systems where uncertainties and imprecisions are inherent, such as hydraulic 

systems with non-prismatic compound channels. 

The foundation of the NF-GMDH model lies in its use of simplified fuzzy reasoning rules. 

These rules allow the model to handle vagueness and ambiguity in the data, providing a robust 

framework for prediction. A typical fuzzy rule in the NF-GMDH model can be formulated as 

follows: 

If x is A and y is B, then z is C [12]. 

In this context: 

x and y represent input variables, 

A and B are fuzzy sets associated with the inputs, 

z is the output variable. 

The NF-GMDH model employs Gaussian membership functions to define the fuzzy sets. The 

Gaussian function is chosen for its smooth and continuous nature, which is suitable for modeling 

hydraulic phenomena. The membership function for the k-th fuzzy rule of the x-th input value is 

expressed as [25]: 

 

( )
( )

2

2
exp

2

k

k

k

x c
x



 −
= − 

 
 

 (5) 

where: 

k denotes the membership degree of x in the k-th fuzzy rule, 

kc represents the center of the Gaussian function, 

k  is the standard deviation, determining the width of the Gaussian function. 

Each neuron in the NF-GMDH model processes two input variables and generates an output, 

which subsequently serves as an input for the neurons in the following layer. The output of each 

neuron is defined as: 

 

( )
1

m

k k
k

y w x
=

=   (6) 

 

where: 

kw  is the weight associated with the k-th fuzzy rule, 

k  is the membership degree of the input. 

The model constructs its network by iteratively selecting the best combination of input 

variables, optimizing the connections between the inputs and outputs through fuzzy rules. 

The NF-GMDH model is structured in multiple layers, with each layer comprising several 

neurons. The hierarchical design enables the model to capture complex interactions and 

dependencies among the variables. Each neuron's output in the current layer is determined by the 

outputs from the neurons in the preceding layer, allowing for a deep learning process that 

enhances the model's accuracy and generalization capabilities [26]. 
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Training the NF-GMDH model involves determining the parameters that minimize the 

prediction error. Each neuron in the model includes six unknown coefficients: four Gaussian 

parameters (centers and widths) and two weighting coefficients. These parameters are optimized 

using sophisticated algorithms to ensure the model accurately reflects the underlying data 

patterns. 

The optimization process involves: 

• Initialization: Setting initial values for the Gaussian centers, widths, and weights. 

• Forward Pass: Calculating the output of each neuron based on the current parameters. 

• Error Calculation: Measuring the difference between the predicted and observed values using 

metrics such as RMSE. 

• Backward Pass: Adjusting the parameters to reduce the error, typically using gradient descent 

or other optimization techniques. 

• The final output of the NF-GMDH model is obtained by averaging the outputs of the last 

layer's neurons, ensuring a stable and reliable prediction. 

• The NF-GMDH model's integration of fuzzy logic with the GMDH algorithm provides 

several benefits: 

• Handling Uncertainty: Fuzzy logic effectively manages the uncertainties and imprecisions in 

hydraulic data, leading to more accurate predictions. 

• Self-Organization: The GMDH component allows the model to self-organize, selecting the 

most relevant input variables and structuring the model dynamically. 

• High Accuracy: The combined approach results in high prediction accuracy, as evidenced by 

the performance metrics obtained during model validation. 

 

In summary, the NF-GMDH model offers a powerful and flexible tool for estimating the 

Manning roughness coefficient in complex hydraulic conditions. By leveraging the strengths of 

both fuzzy logic and the GMDH algorithm, this model provides accurate and reliable 

predictions, which are crucial for effective hydraulic engineering and management. 

 

 
Figure 3. The structure of the NF-GMDH network developed to estimate the relative Manning 

roughness coefficient in the compound channels with converging and diverging floodplains. 
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2.1.3. Multiple-Layer Perceptron Neural Network (MLPNN) 
The Multi-Layer Perceptron Neural Network (MLPNN) is a widely used type of artificial 

neural network, first introduced by Rumelhart et al. [27]. This model has been extensively 

applied in various fields, including hydraulic engineering, due to its ability to model complex, 

non-linear relationships in data. The MLPNN model consists of multiple layers of neurons, 

typically including an input layer, one or more hidden layers, and an output layer. Each neuron is 

connected to others through weighted connections, and the model learns by adjusting these 

weights during training through a process called backpropagation. Previous researchers have 

successfully utilized MLPNN to predict various hydraulic parameters, demonstrating its 

effectiveness in handling complex datasets. Most studies in water engineering leverage multi-

layer perceptron networks with error back-propagation algorithms [28]. The optimal network 

structure is determined through careful consideration of configuration and activation functions. 

During training, initial weights are set either randomly or based on prior experimental findings. 

Typically, MLP networks use sigmoidal activation functions and are trained using techniques 

like Levenberg-Marquardt for enhanced performance and efficiency [29]. Structuring an 

effective network for a problem involves three main stages: stabilization of structure, training 

iterations, and performance validation. Figure 4 illustrates the developed neural network model 

architecture in this study. 

 
Figure 4. illustrates a schematic representation of the multilayer neural network architecture 

designed for estimating the relative Manning roughness coefficient in compound channels featuring 

converging and diverging floodplains. 

 

2.2. Modeling Strategies and Evaluation Criteria 

2.2.1. Modeling Strategies 
In Eq. (1), soft computing models are employed to utilize five input parameters for predicting 

the relative Manning roughness coefficient in compound channels with non-prismatic 

floodplains. This necessitates selecting an optimal combination of one to five parameters for 

input variable configuration. Various methods can streamline this selection process. One 

approach involves applying the Gamma test, as previously employed by Das et al., to identify 

promising input combinations. Another method assesses model structure to prioritize influential 

parameters, enhancing the weighting assigned to them during the formulation of mathematical 



A Prediction of Manning’s nr in Compound Channels … 

 
SUMMER 2024, Vol 10, No 4, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

71 

models. To evaluate model accuracy in this study, R2 and RMSE metrics were employed. Data 

consisting of 196 samples were divided into training (80%) and testing (20%) sets. The training 

set facilitated model calibration, while the testing set validated its performance. Random 

assignment was used due to the non-time series nature of the data collection process. 

 

2.2.2. Evaluation Criteria 
In this research, a variety of statistical measures were utilized to evaluate and contrast the 

performance of the developed models. Among these measures were the Coefficient of 

Determination (R²), Root Mean Square Error (RMSE), and Scattering Index (SI). To visually 

compare the performance of the models, Taylor diagrams were employed. Furthermore, a new 

metric, the Developed Discrepancy Ratio (DDR) index, was introduced to provide a more 

comprehensive evaluation of the models' tendencies towards over-prediction or under-prediction 

across different input data sets. The DDR index calculates the ratio of predicted values to 

observed values minus one; positive values indicate over-prediction, while negative values 

denote under-prediction. Detailed formulas for computing each of these indices are provided in 

Eq. (7) through (10). 

 

(7) 
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−
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(10) ( ) 1i

i

x
DDR

y
= −  

 

In these equations, n represents the number of data points, xi denotes the predicted results 

from numerical simulations,  y is the outcome derived from laboratory experiments, and x is the 

mean value of the results obtained from laboratory measurements, calculated using Eq. (11). 

 

1

1 n

i

i

x x
n =

=   (11) 

 

This approach ensures a robust and nuanced assessment of the models' predictive capabilities, 

allowing for precise identification of their strengths and weaknesses in various scenarios. 
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3. Results and Discussion 
In this section, we thoroughly present and analyze the findings derived from the development 

and application of soft computing models, specifically the Group Method of Data Handling 

(GMDH), Neuro-Fuzzy GMDH (NF-GMDH), and Multi-Layer Perceptron Neural Network 

(MLPNN). These models are utilized to estimate the relative Manning roughness coefficient (nr) 

in compound channels characterized by converging floodplains. Each model is discussed in 

detail to provide a comprehensive understanding of their performance and the methodology 

employed. 

 

3.1. GMDH Model Estimation Results 
This subsection elaborates on the outcomes obtained through the implementation of the 

GMDH model for estimating the relative Manning roughness coefficient in compound channels 

with non-prismatic floodplains. As outlined in the materials and methods section, the GMDH 

model operates using neurons governed by quadratic polynomial equations. Each neuron within 

the model incorporates two specific parameters. The governing equation of each neuron 

comprises six coefficients, which are meticulously calibrated during the training phase. The 

primary objective of this calibration is to minimize the error between the predicted and actual 

values of the relative Manning roughness coefficient. The GMDH model's strategy for 

development is selective, ensuring that not all neurons from the initial layer contribute to the 

subsequent layers. Instead, only those neurons that exhibit superior accuracy in estimating the 

relative Manning roughness coefficient are chosen for inclusion in the next layer. This selective 

approach enhances the model's overall accuracy and efficiency. Figure 3 illustrates the 

architecture of the GMDH model tailored for estimating the relative Manning roughness 

coefficient in compound channels with non-prismatic floodplains. The statistical performance 

metrics of the developed GMDH model during the training phase are notably high, with a 

coefficient of determination (𝑅GMDH train
2 ) of 0.992 and a root mean square error (RMSE) of 

0.0088. During the testing phase, these metrics slightly improve, with 𝑅GMDH test
2  reaching 0.993 

and RMSE decreasing to 0.0068. Furthermore, the scattering index (SI), which is a measure of 

the dispersion of the data points around the regression line, is calculated to be 0.028 for the 

training phase and 0.004 for the testing phase. These results indicate a high level of accuracy and 

reliability in the model's estimations. Figure 5 provides a comparative visualization of the 

GMDH model's performance across the training and testing phases. 
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Figure 5. Comparison between training and testing phases for GMDH model performance 

 

3.2. NF-GMDH Model Estimation Results 
In this subsection, we delve into the results yielded by the NF-GMDH model, which integrates 

the principles of neuro-fuzzy systems with the GMDH approach. As depicted in Figure 4, the NF-

GMDH model features a complex structure comprising two hidden layers. Each hidden layer 

consists of five neurons, contributing to the model's ability to capture intricate patterns within the 

data. The output layer, on the other hand, consists of a single neuron that aggregates the outputs 

from the neurons in the preceding hidden layer by computing their average. The performance 

metrics for the NF-GMDH model during the training phase indicate a coefficient of determination 

(𝑅NF−GMDH train
2 ) of 0.87 and an RMSE of 0.0335. During the testing phase, these metrics are 

𝑅NF−GMDH test
2  of 0.78 and an RMSE of 0.0425. Additionally, the SI for the NF-GMDH model's 

performance in the training phase is calculated to be 0.048, while in the testing phase, it is 0.06. 

These performance indicators suggest that while the NF-GMDH model is robust, it does exhibit 

some variability in its predictive accuracy between the training and testing phases. Figure 6 

illustrates the NF-GMDH model's performance during its development phases, providing a visual 

comparison of its predictive capabilities in both training and testing scenarios. 
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Figure 6. Comparison between training and testing phases for NF-GMDH model performance 

 

3.3. MLPNN Model Estimation Results 
The MLPNN model represents a prevalent soft computing approach in Hydraulic 

Engineering. As outlined in the materials and methods section, its development follows a 

systematic trial-and-error methodology. The architecture of the MLPNN comprises two hidden 

layers: the first layer is composed of five neurons, and the second layer consists of three neurons. 

The schematic of the constructed MLPNN model is illustrated in Figure 2. The statistical 

indicators of the developed MLPNN model in the training phase are 𝑅MLPNN train
2 = 0.999 and 

𝑅𝑀𝑆𝐸MLPNN train =  0.001, and in the test phase are 𝑅MLPNN test
2 = 0.999 and 

𝑅𝑀𝑆𝐸MLPNN test =  0.001. The scattering index (SI) of this model's performance in the training 

and testing phases is equal to 𝑆𝐼MLPNN train = 0.0012 and 𝑆𝐼MLPNN test = 0.0015. The 

performance of the developed MLPNN model in different phases of development (training and 

testing) is presented in Figure (7). 
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Figure 7- Comparison between training and testing phases for MLPNN model performance   

 
Table 2 presents the statistical indices used to evaluate errors in the model for estimating the relative 

Manning roughness coefficient. 

 

Table 2- The results of error evaluation by statistical indices 
 Error Index 

Phase Model 
DDR% SI RMSE 𝑅2 

-0.003 0.028 0.0088 0.992 Train 
GMDH 

0.157 0.004 0.0068 0.993 Test 

-0.005 0.048 0.0335 0.87 Train 
NF-GMDH 

0.194 0.06 0.0425 0.78 Test 

0.0324 0.0012 0.001 0.999 Train 
MLPNN 

0.0233 0.0015 0.001 0.999 Test 
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Figure 8- Comparison between predicted and observed values for nr 

 

Statistical analysis of the models developed in this study to estimate the Manning roughness 

coefficient reveals that the MLPNN model exhibited superior performance during the training 

phase, displaying significantly lower data scattering indices compared to alternative methods 

like GMDH and NF-GMDH. Figure 9 illustrates the DDR index comparison across the models 

during the testing phase. 

 

 
Figure 9. DDR index for models in testing phases  

 

To effectively assess and differentiate model performance during both training and testing 

phases, Taylor diagrams are presented in Figures 10 and 11, respectively. Analysis of the 
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training phase diagram demonstrates that the MLPNN model exhibits superior performance with 

the highest correlation coefficient and the lowest standard deviation among the compared 

models. Similarly, during the test phase, the GMDH and NF-GMDH models demonstrate 

comparable performance levels. 

 

 
Figure 10. Taylor diagram of performance of developed models in the training phase 

 
Figure 11. Taylor diagram of performance of developed models in the testing phase 

 

3.4. Comparing with Previous Studies 
To thoroughly evaluate the performance of non-prismatic compound channels in comparison 

to meandering compound channels, we conducted a comprehensive review of previous studies 

focusing on Manning's roughness coefficient in compound channels. The aim was to understand 

how different methodologies have been utilized to estimate Manning's coefficient and how our 

approach compares in terms of accuracy and reliability. 

Mohanta et al. [30] conducted an in-depth study using advanced machine learning techniques 

to investigate Manning's coefficient in meandering compound channels. They applied several 

sophisticated methods including the Group Method of Data Handling Neural Network (GMDH-

NN), MARS, and SVR. The results from their research showcased the exceptional predictive 
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capabilities of these techniques. Specifically, the GMDH-NN method achieved an R² of 0.959 

during the training phase and an RMSE of 0.0012. During the testing phase, the GMDH-NN 

maintained high performance with R2 of 0.939 and an RMSE of 0.0013. These findings 

highlighted that the GMDH-NN method was superior to MARS and SVR in terms of accurately 

predicting Manning's n. Further advancing this research, Pradhan and Khatua [31] explored the 

application of GEP to estimate Manning's n in meandering compound channels. Their study 

indicated significant improvements over conventional methods, achieving an impressive R² of 

0.999 and an RMSE of 1.625. This demonstrated the potential of GEP as a highly effective tool 

for such estimations. In our study, we conducted a comparative analysis of the statistical indices 

(R² and RMSE) from the models developed by Mohanta et al. [30] and Pradhan and Khatua [31], 

alongside our own models. The results showed that the soft computing models we introduced 

offered notably higher accuracy. Our models, designed using advanced computational 

techniques, consistently outperformed the previously mentioned methods in terms of precision 

and reliability. This comparison underscores the advancements made in the field of hydraulic 

engineering through the application of cutting-edge machine learning and computational 

techniques. By leveraging these advanced methodologies, we can achieve more accurate 

predictions of Manning's roughness coefficient, which is crucial for the design and analysis of 

efficient water conveyance systems. The continual improvement in predictive models not only 

enhances our understanding of flow dynamics in compound channels but also contributes to the 

development of more efficient and reliable engineering solutions. 

 

4. Conclusions 
This research has focused on the development and application of advanced soft computing 

techniques to estimate the relative Manning's roughness coefficient (nr) in compound channels 

with converging and diverging floodplains. The study employed a dataset of 196 experimental 

observations and explored three distinct models: GMDH, NF-GMDH, and MLPNN. The 

comprehensive analysis and comparison of these models provided significant insights into their 

effectiveness and accuracy in predicting nr under complex hydraulic conditions. Key Findings: 

1. Superior Performance of MLPNN: The MLPNN model demonstrated the highest 

accuracy among the three models, with an R² of 0.999 and the lowest RMSE of 0.001 

during both the training and testing phases. The Scattering Index (SI) further validated 

the robustness of MLPNN, making it a highly reliable tool for hydraulic modeling in 

compound channels. 

2. Effectiveness of GMDH and NF-GMDH: Both GMDH and NF-GMDH models also 

exhibited strong predictive capabilities, with R² values of 0.993 and 0.78, and RMSE 

values of 0.0068 and 0.0425 respectively, during the testing phase. These models, 

particularly GMDH, showed excellent performance in capturing the complexities 

associated with non-prismatic floodplain geometries. 

3. Critical Parameters: The study identified longitudinal slope (So), relative hydraulic 

radius (Rr), relative flow depth (Dr), relative dimension of flow aspects (δ*), and the 

convergent or divergent angle (θ) as crucial parameters influencing the Manning 

roughness coefficient. The models effectively integrated these parameters to provide 

accurate estimations of nr. 

4. Comparative Analysis: The developed models were compared with previous studies 

focusing on meandering compound channels. The MLPNN model, in particular, 

outperformed traditional methods and other advanced techniques such as GMDH-NN, 

MARS, and SVR in terms of accuracy and reliability. This highlights the potential of 
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soft computing models in handling complex flow conditions more effectively than 

conventional approaches. 

5. Enhanced Predictive Models: The successful application of MLPNN, GMDH, and NF-

GMDH models underscores the potential of soft computing techniques in enhancing 

predictive models for hydraulic engineering. These models provide more accurate and 

reliable estimates of roughness coefficients, which are essential for effective flood 

management, channel design, and waterway analysis. 

6. Practical Applications: The findings of this study can be directly applied to real-world 

scenarios involving floodplain management and the design of water conveyance 

systems. Engineers and researchers can utilize these models to improve the accuracy of 

flow predictions, thereby optimizing the design and maintenance of hydraulic structures. 

7. Future Research Directions: This research opens avenues for further studies on the 

application of soft computing models in different hydraulic contexts. Future research 

could explore the integration of additional parameters, the application of these models to 

other types of channels, and the development of hybrid models that combine the 

strengths of various soft computing techniques. 
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