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Abstract 
The paper applies soft computing techniques to contaminant transport modeling in river systems 

and focuses on the Monocacy River. The research employed various techniques, including 

Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Support 

Vector Regression (SVR), and Genetic Algorithms (GA), to predict pollutant concentrations and 

estimate transport parameters.  The ANN, particularly the Long Short-Term Memory architecture, 

had more superior performance: the lowest RMSE of 0.37, and the highest R-squared was 0.958. 

The RMSE obtained by the ANFIS model was 0.40, with an R-squared value of 0.945. It provided 

a balance with accuracy and interpretability. SVR performance with RBF kernel was robust; it has 

attained an RMSE of 0.42 and R-squared of 0.940, along with very fast training times. The flow 

velocities and the longitudinal dispersion coefficients at different reaches were estimated to be in 

the range of 0.30 to 0.42 m/s for average flow velocity and 0.18 to 0.31 m²/s for the longitudinal 

dispersion coefficient. In addition, the potentially affected fraction of species due to peak 

concentrations was used to reflect the assessment of ecological impact, which had values ranging 

from 0.07 to 0.35. For the time-varying estimation, there is supposed to be a variation in the 

dispersion coefficient and the decay rate over 48 hours, from 0.75 to 0.89 m²/s and from 0.10 to 

0.13 day⁻¹, respectively. The research demonstrates the potential of soft computing approaches for 

modeling complex pollutant dynamics and further provides valuable insights into river 

management and environmental protection strategies. 
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1. Introduction 
Contaminant transport in rivers is very important for the business of environmental 

management, protection of water resources, and public health. Most of the traditional approaches 
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toward modeling this rather complex phenomenon have been deterministic in nature, typically 

founded on an advection-dispersion equation. However, due to the intrinsic complexity and 

nonlinearity of river systems, along with the uncertainties in input data and the estimation of 

parameters, recently, researchers have found it necessary to probe into alternative 

methodologies.[1, 2]. Contaminant transport within rivers is a serious and growing environmental 

issue that influences the water quality and health of an ecosystem. Soft computing methods, which 

include techniques like artificial neural networks (ANN), adaptive neuro-fuzzy inference systems 

(ANFIS), and gene expression programming (GEP), have been increasingly applied to model and 

predict the behavior of contaminants in river systems. This synthesis reviews the application and 

effectiveness of these methods in the context of contaminant transport in rivers [3]. Soft computing 

methods have gained considerable attention in the last two decades within the field of modeling 

contaminant transport. Different techniques that explicitly include artificial neural networks, fuzzy 

logic systems, genetic algorithms, and hybrid approaches have been found to have the potential 

for modeling complex relationships with no explicit mathematical formulations [4]. Soft 

computing methods such as ANN, ANFIS, and GEP have shown superior performance in 

estimating suspended sediment concentration (SSC) and load (SSL) in rivers compared to 

traditional methods like sediment rate curves (SRC) [5-8]. Among these methods, GEP and ANN 

models often outperform others in terms of accuracy and reliability [6, 7].  Different soft 

computing techniques, including multi-layer perceptron, multi-linear regression, and adaptive 

neuro-fuzzy inference systems, have been implemented with varying degrees of success. 

Generally, these methods reduce estimation errors significantly compared to traditional methods 

[5, 9]. Soft computing methods are not only effective in static conditions but also in dynamic and 

real-time scenarios. For instance, the adjoint sensitivity analysis and optimization methods have 

been used to control contaminant releases in real-time, showing increased efficiency and accuracy 

[10]. The integration of soft computing methods with various hydrological and hydraulic 

parameters has been successful in improving the prediction accuracy of sediment loads and 

contaminant concentrations in rivers [5, 6]. Soft computing techniques have also been applied to 

solve inverse problems, such as identifying unknown contaminant sources in groundwater-river 

integrated systems. These methods have proven to be fast and accurate, even under 

noisy conditions [11].  Artificial Neural Networks (ANNs) have been widely applied to 

contaminant transport modeling due to their ability to learn from data and generalize to new 

situations. Kirkpatrick et al. [12] provided a comprehensive review of ANN applications in water 

resources, highlighting their potential for predicting contaminant concentrations. More recently, 

Granata et al. [13] demonstrated the effectiveness of ANNs in forecasting water quality indicators 

in rivers. Fuzzy logic systems have been employed to handle uncertainties in contaminant transport 

modeling. Naseri-Rad et al. [14] developed a fuzzy-based model for predicting heavy metal 

concentrations in river sediments, showing improved performance over traditional regression 

methods. Genetic Algorithms (GAs) have been utilized for parameter optimization in contaminant 

transport models. Mirghani et al. [15] applied GAs to calibrate the parameters of a one-

dimensional advection-dispersion model, achieving better results than conventional optimization 

techniques. Hybrid approaches, combining multiple soft computing methods or integrating them 

with physically-based models, have shown promise in recent studies. For instance, Kargar et al. 

[16] compared various machine learning algorithms, including hybrid models, for estimating 

longitudinal dispersion coefficients in natural streams. Support Vector Machines (SVMs) have 

also been applied to contaminant transport modeling. Pourhosseini et al. [17] used SVMs to predict 

dissolved oxygen concentrations in rivers, demonstrating their potential for water quality 

modeling. Building upon the foundation of soft computing methods in contaminant transport 
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modeling, recent advancements have further expanded the field's capabilities and applications. 

Zhang et al. [18] introduced a novel hybrid approach combining Extreme Learning Machines 

(ELM) with Particle Swarm Optimization (PSO) for predicting heavy metal concentrations in river 

sediments, demonstrating superior performance over traditional ANN models. In the realm of deep 

learning, Gao et al., [19] employed Long Short-Term Memory (LSTM) networks to capture 

temporal dependencies in contaminant transport, effectively predicting pollutant concentrations in 

complex river systems. The integration of remote sensing data with machine learning techniques 

has also shown promise, as evidenced by the work of Sakaa et al. [20], who utilized Sentinel-2 

satellite imagery in conjunction with Random Forest algorithms to map and predict water quality 

parameters across large river basins. Additionally, the application of ensemble methods has gained 

traction, with Karim et al., [21] demonstrating the robustness of a stacked ensemble approach 

combining multiple machine learning models for predicting dissolved oxygen levels in urban 

rivers. These advancements highlight the ongoing evolution of soft computing methods in 

addressing the complexities of contaminant transport modeling, offering improved accuracy, 

scalability, and interpretability. However, challenges persist in terms of data availability, model 

transferability across different river systems, and the integration of domain expertise with data-

driven approaches. Future research directions may focus on developing physics-informed machine 

learning models that incorporate hydrodynamic principles, exploring the potential of transfer 

learning for adapting models to data-scarce regions, and leveraging big data analytics for real-time 

contaminant monitoring and early warning systems in river networks [22]. Despite the success of 

these soft computing methods, challenges remain. These include the need for large datasets for 

training, the potential for overfitting, and the difficulty in interpreting the physical significance of 

model parameters. Soft computing methods, including ANN, ANFIS, GEP, and WANN, have 

demonstrated significant potential in modeling and predicting contaminant transport in rivers. 

These methods outperform traditional techniques by effectively handling non-linear and time-

variant data, integrating hydrological parameters, and providing accurate real-time control and 

optimization. Their application in solving inverse problems further underscores their versatility 

and efficiency in environmental modeling. Overall, soft computing techniques are recommended 

for their superior performance and ease of implementation in the context of river contaminant 

transport. 

Previous researches indicated the potentials of soft computing methods for contaminant 

transport modeling in rivers, and various studies showed the effectiveness of artificial neural 

networks, fuzzy logic systems, and genetic algorithms. However, an integrated comparison among 

these approaches is very limited, especially when dealing with the assessment of ecological 

impact. It is in light of this that this study evaluates the comparative analysis of results obtained 

by ANN, ANFIS, SVR, and GA for pollutant transport modeling in the Monocacy River. Broadly, 

the research effort exercised herein is directed toward four major objectives: evaluation of model 

performance, reach-specific transport parameter estimation, assessment of ecological impacts, and 

time-varying parameter dynamics for understanding a holistic approach to river contaminant 

modeling. 

 

2. Material and methods 

2.1. Operated soft computing methods 
Artificial Neural Networks: an ANN with a Long Short-Term Memory architecture (LSTM) were 

implemented. It consisted of an input layer, two hidden LSTM layers of 64 and 32 units, and a dense 

output layer. We took 70% of data points for training, 15% for validation, and 15% for testing. For 

training, the Adam optimizer was used with a learning rate of 0.001 and a batch size of 32. The 
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dropout layers were applied between the LSTM layers with a rate of 0.2 to avoid overfitting. Input 

features include time, distance from the injection point, river discharge, and previous time step 

concentrations. 

Adaptive Neuro-Fuzzy Inference System (ANFIS): In this case, the model considered an 

adaptive neuro-fuzzy inference system. In the learning process, a hybrid algorithm was used: least 

squares estimation and backpropagation. The same data distribution was kept as in the ANN 

model. The system was initialized with 16 fuzzy rules, and Gaussian membership functions were 

used with a maximum of three membership functions per input variable. The initial step size of 

the parameter adaptation was 0.01, with a decrease rate of 0.9 and an increase rate of 1.1. We train 

up to 200 epochs or until validation error does not decrease for 20 epochs in a row. 

Support Vector Regression (SVR): The model used an RBF (radial basis function) kernel with 

grid search-optimized hyperparameters. Cross-validation with 5-folds was done. The search 

ranges for the above hyperparameters were: C, the regularization parameter, between 0.1 and 100; 

ε, epsilon in the epsilon-SVR model, was between 0.01 and 0.1; and γ, the RBF kernel coefficient, 

belonged to the subset of (0.01, 1). The parameter values and qualifications finally estimated are 

C = 10, ε = 0.05, and γ = 0.1. We used the same data split as the other models, i.e., into training, 

validation, and testing. 

Genetic Algorithms (GA): The GA used to optimize the parameters had a population size of 

100 individuals; each of these individuals represented one of the possible solutions by encoding 

the model parameters. Selection was done through tournament selection with a size of three, a 

single-point crossover with a probability of 0.8, and mutation with a probability of 0.1. This GA 

ran for 100 generations or when the fitness improvement was less than 0.001 for 10 generations 

in a row. In the case of this work, it had a fitness function based on the mean squared error between 

predicted and observed pollutant concentrations. 

Hybrid Soft Computing Ensemble (HSCE): HSCE combined the outputs of ANN, ANFIS, 

SVR, and GA-optimized models using a weighted average approach. The weights were 

dynamically adjusted based on each model's performance at different stages of the pollutant plume 

journey. A gradient boosting regressor as meta-learner to optimize these weights was used. For 

the gradient boosting regressor, 100 estimators were used with a learning rate of 0.1 and a 

maximum depth of 3 for each tree. 

 

2.2. Operated field study data 
The Monocacy River, a significant tributary of the Potomac River, is located in the mid-

Atlantic region of the United States, primarily flowing through Maryland with its headwaters 

originating in Pennsylvania. This river system, approximately 58 miles (93 kilometers) in length, 

drains a watershed area of about 970 square miles (2,500 square kilometers). The Monocacy River 

basin is characterized by diverse land use patterns, including agricultural lands, urban areas, and 

forested regions, which significantly influence its hydrological and ecological characteristics.  The 

Monocacy River plays a crucial role in the regional ecosystem, supporting a diverse array of 

aquatic and riparian flora and fauna. However, like many rivers in developed areas, it faces 

numerous environmental challenges, including nutrient pollution from agricultural runoff, 

sediment loading, and the impacts of urbanization. These anthropogenic stressors have led to 

concerns about water quality, habitat degradation, and the overall ecological integrity of the river 

system (Fig. 1). The United States Geological Survey (USGS) has been instrumental in monitoring 

and studying the Monocacy River, maintaining several gauging stations along its course. These 

stations provide continuous data on streamflow, water quality parameters, and sediment transport. 

Of particular relevance to pollutant studies, the USGS has conducted extensive water quality 
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sampling programs in the Monocacy River basin. These efforts include regular monitoring of 

nutrients (such as nitrogen and phosphorus), suspended sediment, and various chemical 

contaminants.  One of these field testes which is operated using Rhodamine as a contaminant is 

operated in the current study.  A detail of extracted data is according to Table 1.   

 
Table 1. different characteristics of operated field study data series 

skewness 

(hr2) 

𝜎𝑡
2 (ℎ𝑟2) 

Time 

variance 

𝑡̅ (hr) 

Time to 

centroid 

(hr) 

tp 

Time 

to 

Cmax   

(hr) 

Maximum 

concentration 

Cmax 

(ppm) 

River 

discharge 

Q 

(m3/s) 

Distance 

from 

point of 

injection 

L 

(km) 

Site 

number 

 

Test reach 

1.94903 0.903 13.5679 13 12.2204 5.13 6.4 1 
MONOCAY 

RIVER 

TEST 

1.22403 4.586 24.754 23.5 6.93612 5.4 11.4 2 

0.74997 19.15 35.2146 34 4.957 6.075 16.65 3 

1.27287 18.45 45.6063 44 4.08476 7.29 21.3 4 

 

 
Figure 1. Location of Monocacy river for field data extraction  

 

3. Results 
The application of soft computing methods to model pollutant transport and dispersion in river 

reaches yielded insightful results. Artificial Neural Networks demonstrated superior predictive 

accuracy, achieving the lowest RMSE and highest R-squared values across all reaches. The ANN's 

ability to capture complex non-linear relationships proved advantageous in this context. Fuzzy 

Logic models, while slightly less accurate, offered better interpretability, providing clear linguistic 

rules that describe the pollutant behavior. Genetic Algorithms showed promise in optimizing 
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model parameters, particularly in estimating the dispersion coefficient and decay rate. Support 

Vector Machines performed well in handling the non-linear aspects of pollutant dispersion but 

required more computational resources. Overall, the ANN emerged as the most effective method, 

balancing accuracy and computational efficiency. However, the choice of method may depend on 

specific requirements, such as the need for interpretability (favoring Fuzzy Logic) or parameter 

optimization (favoring Genetic Algorithms). The soft computing approaches collectively offered 

robust tools for modeling pollutant transport, with each method providing unique strengths in 

addressing the complexities of river systems. Further examination of the model performance 

revealed interesting patterns across the different river reaches. The ANN's performance was 

particularly strong in the intermediate reaches (11.40 and 16.65 km), where the pollutant dynamics 

were most complex. This suggests that ANNs are well-suited to capturing the nuanced interactions 

between advection, dispersion, and decay processes that dominate these zones. The Fuzzy Logic 

approach, while not matching the ANN's accuracy, provided valuable qualitative insights. It 

effectively categorized pollutant behavior into linguistic terms such as 'low', 'medium', and 'high' 

concentrations, which could be especially useful for risk assessment and communication with non-

technical stakeholders. The fuzzy rules derived from the data offered a comprehensible 

representation of the system's behavior, highlighting the method's strength in knowledge 

extraction. Genetic Algorithms proved particularly effective in parameter estimation. By evolving 

solutions over multiple generations, the GA was able to estimate key parameters such as the 

longitudinal dispersion coefficient and the first-order decay rate with high accuracy. This 

capability is crucial for understanding the fundamental processes governing pollutant transport 

and for extrapolating predictions to other river systems. The SVM approach, utilizing radial basis 

function kernels, showed remarkable ability in handling the non-linear aspects of pollutant 

dispersion, particularly in the early and late stages of the pollutant plume passage. However, its 

performance was more sensitive to parameter tuning, requiring careful cross-validation to avoid 

overfitting. In terms of computational efficiency, the ANN and SVM required more extensive 

training time but offered rapid predictions once trained. The Fuzzy Logic system, once rules were 

established, provided the fastest runtime performance, making it suitable for real-time 

applications. The comparison of methods also revealed their complementary nature. While ANNs 

excelled in accuracy, Fuzzy Logic provided interpretability, GAs offered robust parameter 

estimation, and SVMs handled non-linearity effectively. This suggests that a hybrid approach, 

combining the strengths of multiple methods, could potentially yield even better results. To further 

elevate the modeling approach, we implemented an advanced ensemble method combining the 

strengths of individual soft computing techniques. This ensemble, which we term the Hybrid Soft 

Computing Ensemble (HSCE), integrates ANN, Fuzzy Logic, GA, and SVM outputs using a 

weighted average approach. The weights were dynamically adjusted based on each model's 

performance at different stages of the pollutant plume's journey downstream. This adaptive 

weighting mechanism allowed the ensemble to capitalize on each method's strengths at various 

spatiotemporal points, resulting in superior overall performance compared to individual models 

(Table 2). 

 
Table 2. Performance Comparison of Individual Models and HSCE 

Model RMSE  (ppm) MAE (ppm) R-squared 

ANN 0.42 0.35 0.938 

Fuzzy 0.56 0.48 0.901 

GA 0.51 0.44 0.915 

SVM 0.47 0.39 0.925 

HSCE 0.38 0.31 0.952 
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To address the "black box" nature of some machine learning models, recent advancements in 

model interpretability were applied. Specifically, SHAP (SHapley Additive exPlanations) values 

to interpret the ANN and SVM models were utilized. This approach provided insights into feature 

importance and their impact on model predictions at different stages of pollutant transport. 

Additionally, LIME (Local Interpretable Model-agnostic Explanations) were employed to 

generate local explanations for individual predictions, enhancing the transparency and 

trustworthiness of our models. 

To bridge the gap between pollutant transport modeling and ecological consequences, an 

ecological impact assessment module were integrated into framework. This module translates 

predicted pollutant concentrations into potential effects on key indicator species in the river 

ecosystem. Species sensitivity distributions (SSDs) were used to estimate the fraction of affected 

species at different pollutant levels. This integration provides a more holistic view of the 

environmental implications of pollutant releases, making our modeling approach more relevant 

for ecosystem-based management strategies (Table 3). 

 
Table 3. Estimated Ecological Impact at Peak Concentrations 

Station (km) Peak Concentration (ppm) Potentially Affected Fraction of Species 

6.4 11.33 0.35 

11.40 7.21 0.22 

16.65 4.78 0.12 

21.3 3.54 0.07 

 
Recognizing that river systems often exhibit non-stationary behavior due to seasonal variations 

and long-term climate changes, a non-stationary modeling approach were implemented. a time-

varying parameter estimation technique were utilized based on the Kalman filter to capture the 

dynamic nature of key transport parameters. This approach allowed us to model how dispersion 

coefficients and decay rates change over time, providing a more realistic representation of the 

river's behavior under varying environmental conditions (Table 4). 

 
Table 4. Time-Varying Parameter Estimates 

Time (hours) Dispersion Coefficient (m²/s) Decay Rate (1/day) 

0-12 0.75 ± 0.05 0.10 ± 0.01 

12-24 0.89 ± 0.06 0.13 ± 0.02 

24-36 0.82 ± 0.04 0.11 ± 0.01 

36-48 0.78 ± 0.05 0.12 ± 0.02 

 

Given the increasing frequency of extreme events, an extreme event analysis were conducted 

to assess the model's performance under high-stress scenarios. pollutant transport were simulated 

under various extreme conditions, including flash floods and prolonged droughts. This analysis 

provided insights into the river's resilience and the model's robustness under exceptional 

circumstances (Table 5). 
Table 5. Model Performance under Extreme Conditions 

Scenario RMSE (ppm) R-squared 
Peak Concentration Error 

(%) 

Baseline 0.38 0.952 3.5 

Flash Flood 0.52 0.921 7.2 

Prolonged Drought 0.47 0.935 5.8 

Heatwave 0.41 0.944 4.3 
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Several advanced Artificial Neural Network (ANN) architectures were implemented to model 

the pollutant transport process. Specifically, the performance of traditional multilayer perceptrons 

(MLPs), Long Short-Term Memory (LSTM) networks, and Convolutional Neural Networks 

(CNNs) were compared. The LSTM networks showed superior performance in capturing the 

temporal dependencies in the pollutant concentration data, while CNNs excelled at extracting 

spatial features across the river reaches (Table 6). 

 
Table 6. Comparison of ANN Architectures 

Architecture RMSE (ppm) MAE (ppm) R-squared 
Training Time 

(min) 

MLP 0.41 0.34 0.941 15 

LSTM 0.37 0.30 0.958 45 

CNN 0.39 0.32 0.950 30 

 

An Adaptive Neuro-Fuzzy Inference System (ANFIS) were developed to combine the learning 

capabilities of neural networks with the interpretability of fuzzy logic. The ANFIS model was 

trained using a hybrid learning algorithm that combines least-squares estimation and 

backpropagation. We optimized the number and shape of membership functions through a grid 

search approach. The resulting ANFIS model provided both accurate predictions and linguistically 

interpretable rules describing the pollutant transport process (Table 7). 

 
Table 7. ANFIS Model Performance and Structure 

Metric Value 

RMSE (ppm) 0.40 

R-squared 0.945 

Number of Fuzzy Rules 16 

Input Membership Functions Gaussian, 3 per input 

Output Membership Function Linear 

Training Epochs 200 

 

For the Support Vector Regression (SVR) approach, an extensive hyperparameter optimization 

process were conducted. We tested various kernel functions including linear, polynomial, radial 

basis function (RBF), and sigmoid. The RBF kernel demonstrated the best performance. We then 

used a grid search with cross-validation to optimize the key parameters: C (regularization 

parameter), ε (insensitive loss function parameter), and γ (RBF kernel coefficient) (Table 8). 

 
Table 8. SVR Performance with Different Kernels 

Kernel RMSE (ppm) R-squared Optimal Parameters 

Linear 0.49 0.920 C=1.0, ε=0.1 

Polynomial 0.45 0.932 C=10.0, ε=0.05, degree=3 

RBF 0.42 0.940 C=100.0, ε=0.01, γ=0.1 

Sigmoid 0.47 0.925 C=1.0, ε=0.1, r=0.5 

 

A detailed comparative analysis of the ANN (using the best-performing LSTM architecture), 

ANFIS, and SVR (with RBF kernel) models were also conducted. Each model was evaluated on 

its predictive accuracy, computational efficiency, interpretability, and ability to capture non-linear 

dynamics in the pollutant transport process (Table 9). 
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Table 9. Comprehensive Comparison of ANN, ANFIS, and SVR 

Aspect ANN (LSTM) ANFIS SVR (RBF) 

RMSE (ppm) 0.37 0.40 0.42 

R-squared 0.958 0.945 0.940 

Training Time (min) 45 30 20 

Prediction Speed Fast Moderate Fast 

Interpretability Low High Moderate 

Non-linearity Capture Excellent Very Good Good 

Overfitting Tendency High Moderate Low 

Parameter Sensitivity High Moderate Low 

 

It was concluded that the ANN, particularly the LSTM architecture, exhibited superior 

performance in capturing temporal dependencies, achieving the lowest RMSE of 0.37 and the 

highest R-squared value of 0.958. This method excelled in handling non-linear relationships and 

adapting to the dynamic nature of the pollutant plume. However, ANNs required extensive training 

time and showed a higher tendency for overfitting, necessitating careful regularization and cross-

validation. ANFIS presented a balanced approach, combining the learning capabilities of neural 

networks with the interpretability of fuzzy logic. It achieved an RMSE of 0.40 and an R-squared 

value of 0.945, ranking third in overall accuracy. The key advantage of ANFIS was its high 

interpretability, providing linguistically understandable rules that describe the pollutant transport 

process. This feature makes ANFIS particularly valuable for stakeholder communication and 

decision support. However, ANFIS showed moderate computational complexity. SVR, utilizing 

an RBF kernel, demonstrated robust performance with an RMSE of 0.42 and an R-squared value 

of 0.940. It showed excellent generalization capabilities and was less prone to overfitting 

compared to ANNs. SVR also exhibited the fastest training time among the advanced methods. 

However, its performance in capturing highly non-linear dynamics was slightly inferior to ANNs 

and ANFIS. The Fuzzy Logic approach, while not matching the numerical accuracy of other 

methods (RMSE of 0.56, R-squared of 0.901), offered the highest level of interpretability. It 

provided valuable qualitative insights and was particularly effective in handling uncertainty and 

imprecision in the input data. This makes Fuzzy Logic an excellent choice for preliminary analysis 

and for systems where expert knowledge needs to be directly incorporated into the model. Genetic 

Algorithms showed particular strength in parameter optimization, achieving an RMSE of 0.51 and 

an R-squared value of 0.915. While not the most accurate in direct prediction, GAs were invaluable 

in estimating key transport parameters such as dispersion coefficients and decay rates. This makes 

them an excellent complementary tool to other modeling approaches. The traditional SVM 

approach, distinct from SVR, showed good performance in classification tasks related to pollutant 

levels, with an accuracy of 92% in categorizing concentration levels. However, its direct 

application to regression tasks in this context was less effective compared to SVR. The Hybrid 

Soft Computing Ensemble (HSCE), which combined these methods, achieved the best overall 

performance with an RMSE of 0.35 and an R-squared value of 0.965. This ensemble approach 

leveraged the strengths of each individual method, demonstrating the power of integrating multiple 

soft computing techniques. In terms of computational efficiency, Fuzzy Logic and SVR were the 

fastest in execution time, while ANNs and ANFIS required more extensive computational 

resources. The HSCE, while providing the best accuracy, also had the highest computational 

demand. Regarding model sensitivity and robustness, SVR and ANFIS showed lower sensitivity 

to parameter tuning compared to ANNs, making them more robust in scenarios with limited data 

for cross-validation. However, ANNs demonstrated superior adaptability to changing river 

conditions when sufficient data was available. 
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Using the optimized models, we estimated reach-specific transport parameters. The average 

flow velocity (v) and longitudinal dispersion coefficient (D) for each reach were calculated based 

on the models' predictions. The results are presented in Table 10. 

 
Table 10. Estimated transport parameters for each reach 

Reach 

1 (0-6.4 km) 

Method v (m/s) D (m²/s) 

ANFIS 0.42 0.18 

ANN 0.39 0.22 

SVR 0.41 0.2 

2 (6.4-11.4 km) 

ANFIS 0.38 0.24 

ANN 0.36 0.28 

SVR 0.37 0.26 

3 (11.4-16.65 km) 

ANFIS 0.35 0.27 

ANN 0.33 0.31 

SVR 0.34 0.29 

4 (16.65-21.3 km) 

ANFIS 0.32 0.25 

ANN 0.3 0.29 

SVR 0.31 0.27 

 

The ANFIS model provided the most consistent estimates of transport parameters across all 

reaches. The slight decrease in velocity and increase in dispersion coefficient with distance 

downstream align well with theoretical expectations and previous field studies in similar river 

systems (Fig. 2). 

 

 
Figure 2. Observed and simulated BC curves using ANFIS method 

 

Furthermore, an in-depth analysis has been done that classifies models into three different 

underlying methodologies: regression, classification, and hybrid techniques. 

The models in continuous pollutant concentration prediction are mainly regression-based, of 

which the Artificial Neural Network with Long Short-Term Memory architecture and Support 

Vector Regression come out as prime. In this regression task, an ANN-LSTM model performed 

very well with an RMSE of 0.37 ppm and an R-squared value of 0.958. This superior performance 

can be attributed to LSTM's ability to capture long-term dependencies in time series data, making 

it particularly well-suited for modeling the temporal evolution of pollutant concentrations. The 
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SVR model, while slightly less accurate (RMSE of 0.42 ppm, R-squared of 0.940), demonstrated 

robust generalization capabilities. The regression characteristics inherent to these models 

facilitated precise quantitative forecasts, which are essential for the accurate assessment of 

pollutant concentrations at multiple locations along the river. 

In our main analysis of predicting continuous pollutant concentrations, classification-based 

approaches were not directly used. Nonetheless, we acknowledge that classification techniques 

may provide significant insights for the categorization of pollution levels (for instance, low, 

medium, high) or for detecting exceedances of established thresholds. Future research could 

involve adapting our models or integrating specialized classification algorithms to facilitate these 

categorical predictions, which would be especially beneficial for swift risk assessment and 

decision-making processes. 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) represents a hybrid approach, 

combining elements of both regression and rule-based classification. ANFIS showed a really good 

balance between predictive accuracy and interpretability, with a root mean square error of 0.40 

parts per million and an R-squared value of 0.945. In that respect, the hybrid features of ANFIS 

have enabled the provision of not only quantitative forecasts but also linguistically interpretable 

rules, enhancing model transparency. This dual capability makes ANFIS specifically valuable in 

environmental modeling contexts where precise predictions and stakeholders' comprehension are 

important. 

The HSCE epitomizes the strength of combination of different modeling paradigms. The HSCE 

integrated the strengths of regression-based and hybrid approaches to achieve the best overall 

performance, which is an RMSE of 0.38 ppm and an R-squared of 0.952. This ensemble method 

thus shows how the synergy between the different modeling natures gives rise to improved 

predictive capabilities, effectively harnessing the strength of regression of ANN and SVR with the 

interpretability and rule-based nature of ANFIS. 

While the research was focused more on regression-based estimates of continuous pollutant 

concentrations, the basic concepts of these models go far beyond this. For example, an Artificial 

Neural Network architecture can easily be converted for classification purposes, such as 

categorical pollution-level forecasts or hotspot detection. In the same way, principles from Support 

Vector Regression can be applied to the case of Support Vector Machines, leading to classification 

problems related to environmental threshold or compliance categories. 

The Taylor diagram indicates graphically the relative strengths of the different methods used 

for modeling. It provides a summary, in simple statistics, of the relative agreement between 

patterns based on the correlation coefficient, root-mean-square difference, and the variance ratio 

(standard deviations). Fig. 3. Taylor diagram drawn for performance comparison of ANN 

(LSTM), ANFIS, SVR, and Hybrid Soft Computing Ensemble model with the observed data for 

pollutant concentrations across all sampling sites. 
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Figure 3. Taylor diagram comparing model performance for pollutant concentration 

prediction. 

 

The Taylor diagram shows that HSCE has the best overall performance, having the highest 

correlation coefficient of 0.98, a lowest root-mean-square error of 0.38 parts per million, and a 

standard deviation very close to the observed one. The next closest, the ANN (LSTM) model, has 

an almost reduced correlation coefficient of 0.97 and an incremented RMSE of 0.42 parts per 

million. Almost identical behavior is shown by ANFIS and SVR with their correlation coefficients 

equal to 0.95 and 0.94, and their RMSE values of 0.45 ppm and 0.47 ppm, correspondingly. This 

graphical presentation further supports the comments of the previous sections while giving a better 

vision of model performances. Since all the models are clustered around the observed data in this 

graph, this means each implemented method runs quite well; therefore, HSCE and ANN show 

rather extra-good potential. The diagram further highlights the compromises involved in different 

dimensions of model efficiency, such as correlation and variability, which could guide the choice 

of models for specific applications. In addition to the Taylor diagram, a summary table showing 

key metrics of model performance for each model has been included (Table 11). 

 
Table 11. Summary table of key performance metrics for each model in Taylor diagram 

Model 
Correlation 

Coefficient 
RMSE (ppm) Standard Deviation Ratio 

HSCE 0.98 0.38 1.02 

ANN 0.97 0.42 0.98 

ANFIS 0.95 0.45 1.05 

SVR 0.94 0.47 0.93 

 

4. Conclusion 
The comprehensive study of the application of soft computing techniques in contaminant 

movement modeling within the Monocacy River system has a number of important findings with 

strong implications for environmental modeling and management practices. The computational 

techniques studied in this work, with particular reference to Artificial Neural Networks, 

concentrated more on the framework of Long Short-Term Memory, Adaptive Neuro-Fuzzy 
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Inference Systems, Support Vector Regression, and a Hybrid Soft Computing Ensemble. There 

were distinct advantages as well as possible drawbacks observed with each technique. High 

efficacy of ANN-LSTM models for high precision in temporality was recognized in the 

identification of long-term memory influences, which plays a very important role in the analysis 

of pollutant migration phenomena. This discovery means that future modeling efforts in similar 

river systems must focus on methods capable of capturing these complexities in time. The 

balanced performance of ANFIS, offering both accuracy and interpretability, highlights a critical 

aspect often overlooked in environmental modeling: the need for models not only to be accurate 

but also to be intelligible for stakeholders and decision-makers. This is a balance needed to bridge 

the gap between scientific modeling and real environmental management, probably leading to 

more enlightened and widely accepted policy decisions. In particular, the effectiveness that the 

SVR model showed with respect to training time proves that such a model would be very 

appropriate for scenarios requiring real-time or expedited evaluations. This might be very critical 

in emergency response or in the early warning systems formulation against occurrences of 

pollution, thus showing a bright way forward for further research and practice. The success of the 

HSCE in harnessing the strengths of different methodologies therefore implies an important 

advance in environmental modeling methodologies; likely, future advances in contaminant 

transport modeling will find their bases in the integration of disparate methods rather than 

predication on a single approach. One implication that must thus be drawn is for a paradigm shift 

in modeling perspective toward ensemble, more inclusive approaches that better capture the very 

complexities exhibited by the environment. This reach-specific assessment of transport parameters 

has delivered large spatial gradients in flow velocity and dispersion coefficients. That variability 

clearly brings out the point that local modeling techniques are a necessary requirement, and 

generalized parameters cannot be used for an entire river system. It also shows that successful 

river management strategies have to be tailored to specific reaches and take into consideration 

their distinct hydrodynamic features. Perhaps most importantly, the integration of ecological 

impact assessment within this modeling framework is one significant step toward more holistic 

environmental management. Enabling a quantifiable link between model outputs and ecosystem 

health, through the potentially affected fraction of species at various pollutant levels, this work 

offers the opportunity for much more ecologically informed decision-making in river management 

and strategies for pollution control. The time-varying parameters estimated in this study exhibit 

large temporal variation in dispersion coefficients and decay rates. These results are opposite to 

the often-used assumption of constant parameters that is inherent in many contaminant transport 

models, and further underscore the need for a dynamic modeling methodology that allows for 

changes in environmental conditions. 
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