Dimensionless Equations for Hydraulic Jump Stilling Basins Downstream of Gabion Stepped Chutes

Document Type : Research Paper

Authors

1 Federal University of Bahia, R. Prof. Aristídes Novis, 2 - Federação, 40210-630, Salvador, Bahia, Brazil.

2 Federal University of Ceará, Centro de Tecnologia, Departamento de Engenharia Hidráulica e Ambiental. Av. Mister Hull, Bloco 713 Pici 60451970 - Fortaleza, Ceará – Brasil.

3 Auburn University, 238 Harbert Center, Auburn, Alabama, USA.

4 University of São Paulo, USP, Av. Trabalhador Sãocarlense, 400 CP 359 São Carlos, SP CEP 13566-590, Brazil.

Abstract

Flows in stepped chutes built with gabions have been studied for about four decades and have found applications mainly in small dams and drainage systems. This paper presents a literature review of experimental studies on the subject, especially those that published data and methodologies for designing stepped chutes in gabions. A dimensionless methodology for predicting the main design variables is proposed, and equations were proposed for this purpose. These equations, based on physical principles and statistically supported, involve characteristics of stilling basins of hydraulic jump downstream of stepped chutes formed by gabions and the main quantities related to the design of these hydraulic structures. More than 160 data points were used, each of them involving several parameters of the adopted physical models, making the proposed methodology valid for five different slopes of the downstream face of the stepped chutes. The new equations allow for calculating the length and elevation of the stilling basin bottom. They also allow the determination of the supercritical depth at the basin inlet and the estimation of the height of the continuous end sill of the stilling basin. The proposed equations present strong correlations and adherence to the experimental data in the literature and reveal the missing data about the subject considering the existing literature. In addition, an application example illustrates the use of the developed methodology and compares the present results with those obtained from a methodology available in the literature.

Keywords

Main Subjects


  1. Peyras, L.; Royet, P.; Degoutte, G. (1992). “Flow and energy dissipation over stepped gabion weirs”. Journal of Hydraulic Engineering, Vol. 118, No.5, May, 1992, pp.707-717.
  2. Mohamed, H.I. (2010) Flow over Gabion Weirs. Journal of Irrigation and Drainage Engineering, ASCE, August 2010, pp. 573-577. DOI: 10.1061/(ASCE)IR.1943-4774.0000215.
  3. Al-Mohammed, F.M.; Mohammed, S.H. (2015) Flow Through and Over Gravel Gabion Weirs. Journal of Kerbala University, Vol. 13 No.2 Scientific, pp. 193-205.
  4. Velázquez-Luna, L; Ventura-Ramos, E. (2017) Concentrated Flow through Gabions Weirs. Hydraulics Conference of Autónoma de Querétaro, IEEE, Querétaro, México, May 15-19, pp.1-4.
  5. Pallavi, M.; Harashit, L. (2018) Open Channel Flow Characteristics Using Gabion Weir. International Research Journal of Engineering and Technology (IRJET) Vol. 5, No. 12, pp. 928-933.
  6. Safarzadeh, A.; Mohajeri, S.H.; (2018) Hydrodynamics of Rectangular Broad-Crested Porous Weirs. Irrig. Drain Eng. ASCE, Vol. 144, No 10, 04018028.
  7. Al-Fawzy, A.M.; Al- Mohammed, F.M.; Alwan, H. (2020) Energy dissipation in gabion weirs. 3rd International Conference on Engineering Sciences, IOP Conf. Series: Materials Science and Engineering 671, pp.1-12.
  8. Salmasi, F.; Sabahi, N.; John Abraham, J. (2021) Discharge Coefficients for Rectangular Broad-Crested Gabion Weirs: Experimental Study. Irrig. Drain Eng., ASCE, Vol. 147, No. 3, 04021001.
  9. Azma, A.; Sadrabadi, M.T.; Liu, Y.; Azma, M.; Zhang, D.; Cao, Z.; Li, Z. (2023) Boosting ensembles for estimation of discharge coefficient and through flow discharge in broad‑crested gabion weirs. Applied Water Science 13:45. https://doi.org/10.1007/s13201-022-01841-x
  10. Biabani, R.; Salmasi, F.; Nouri, M.; Abraham, J. (2022) Flow Over Embankment Gabion Weirs in Free Flow Conditions. Journal of Hydro-environment Research, ELSEVIER, Vol. 44, pp. 65-76.
  11. Stephenson, D. (1979). “Gabion energy dissipators”. 13th ICOLD Congress, New Delhi, Q. 50, R.3, p. 33-34, 1979.
  12. Rand, W. (1955). Flow geometry at straight drop spillways. Journal of the Hydraulics Division, Proceedings, ASCE, v. 81, n. 791, Sept., p. 1-13, 1955.
  13. Schulz, H.E.; Nóbrega, J.D.; Simões, A.L.A.; Schulz, H; Porto, R.M. (2015). Details of Hydraulic Jumps for Design Criteria of Hydraulic Structures, Hydrodynamics - Concepts and Experiments, Prof. Harry Schulz (Ed.), ISBN: 978-953-51-2034-6, InTech.
  14. Chinnarasri, C.; Donjadee, S.; Israngkura, U. (2008). “Hydraulic Characteristics of Gabion-Stepped Weirs”. Journal of Hydraulic Engineering, ASCE, Vol. 134, No. 8, August 2008, pp. 1147-1152.
  15. Wüthrich, D.; Chanson, H. (2014). “Hydraulics, Air Entrainment, and Energy Dissipation on a Gabion Stepped Weir”. Journal of Hydraulic Engineering, ASCE, June 2014, Vol. 140, No. 9, pp. 04014046.
  16. Vashisth, A. (2017). “Energy Dissipation over Stepped Gabion Weir”. International Journal of Dynamics of Fluids 13, No. 1, pp. 153-159.
  17. Rajaei, S.H.; Khodashenas, S.R.; Esmaili, K. (2020). “Comparative evaluation of energy dissipation over short stepped gabion and rigid spillways”. Journal of Hydraulic Research, Vol. 58, No. 2, pp. 262-273.
  18. Salmasi, F.; Razi, S.; Abraham, J. (2023). Hydraulics of flow in gabion stepped spillways, an experimental study. Journal of Hydraulic Structure. 9, p. 75-100. 2023.
  19. Daneshfaraz, Rasoul; Sadeghi, Hojjat; Ghaderi, Amir; Abraham, John Patrick (2024) The effect of gabion steps on the hydraulic jump characteristics downstream of stepped spillways, Water Science, 38:1, 128-139, DOI: 10.1080/23570008.2024.2307243
  20. Daneshfaraz, Rasoul; Aminvash, Ehsan; Najibi, Amir. Experimental Study of Hysteretic Behavior of Supercritical Regime on Hydraulic parameters of Flow against Gabion Contraction. Iranian Journal of Soil and Water Research, [S.l.], v. 53, n. 1, p. 33-44, mar. 2022. University of Tehran. DOI: 10.22059/ijswr.2022.334538.669141
  21. Aminvash, E.; Roushangar, K. (2023). Numerical Investigation of the Effect of the Frontal Slope of Simple and Blocky Stepped Spillway with Semi-Circular Crest on Its Hydraulic Parameters. Iranian Journal of Irrigation and Drainage, 17(1), 102-116.
  22. Ghaderi, A., Abbasi, S., Abraham, J.; Azamathulla, H. M. (2020). Efficiency of Trapezoidal Labyrinth Shaped stepped spillways. Flow Measurement and Instrumentation, 72, 101711. https://doi.org/10.1016/j.flowmeasinst.2020.101711
  23. Simões, A.L.A. (2008). Considerações sobre a hidráulica de vertedores em degraus: metodologias adimensionais para pré-dimensionamento. Dissertação (Mestrado) – Escola de Engenharia de São Carlos – Universidade de São Paulo, São Carlos.
  24. Marques, M.G.; Drapeau, J.; Verrette, J-L. (1997). “Flutuação de pressão em um ressalto hidráulico”. Revista Brasileira de Recursos Hídricos, Vol. 2, No. 2, Jul/Dez 1997, pp. 45-52.
  25. Novakoski, C. K. (2016). Análise da distribuição longitudinal das pressões em um ressalto hidráulico formado a jusante de vertedouro em degraus. Dissertação (Mestrado em Recursos Hídricos)—Porto Alegre: Universidade Federal do Rio Grande do Sul - UFRGS, 2016.

 

  1. Steinke Júnior, R. (2020). Caracterização das pressões em bacias de dissipação por ressalto hidráulico livre com baixo número de Froude. Dissertação (Mestrado em Recursos Hídricos)—Porto Alegre: Universidade Federal do Rio Grande do Sul - UFRGS, 2020.
  2. Bradley, J. N.; Peterka, A. J. (1957). “The hydraulic design of stilling basins”. ASCE, Journal of Hydraulic Engineering. Vol.83, n.HY5, p.1401-1406, Oct., 1957.
  3. Cardoso, F.G. (2006). Estudo do ressalto hidráulico em bacias de dissipação de energia a jusante de descarregadores de cheias em degraus. 143f. Trabalho de Conclusão de Curso (Engenharia Civil) – Instituto Superior Técnico, Universidade Técnica de Lisboa.
  4. Meireles, I.O.C; Matos, J.; Silva Afonso, A. (2010). Flow characteristics along USBR type III stilling basin downstream of stepped spillways. Hydraulic Structures: Useful Water Harvesting Systems or Relics? Third International Junior Researcher and Engineer Workshop oh Hydraulic Structures, May, 2010, Edinburgh, Scotland. R, Janssen and H. Chanson (eds). Hydraulic Model Report CH80/10, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 211 pp.
  5. Conterato, E. (2014). Determinação de critérios de dimensionamento de soleira terminal em bacia de dissipação a jusante de vertedouro em degraus. Dissertação (Mestrado em Recursos Hídricos)—Porto Alegre: Universidade Federal do Rio Grande do Sul - UFRGS, 2014.
  6. Simões, A. L. A., Schulz, H. E. and Porto, R. M. (2010) Stepped and smooth spillways: resistance effects on stilling basin lengths, Journal of Hydraulic Research, 48: 3, 329 — 337.