Integrating Fuzzy Logic and Numerical Modeling for Analyzing Wave Patterns: A Study of the Makran Coastline

Document Type : Research Paper

Authors

1 Department of Atmospheric and Oceanographic Science, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.

2 Researcher at Center Providing Consultation And Simulation Services For Coastal And Marine Environments (NPDS Company), Bandar Abbas, Iran.

Abstract

The Makran coastline, a strategic maritime region, has remained understudied regarding its hydrodynamic behavior. This study applies numerical simulations to analyze wave patterns in the northern Gulf of Oman, focusing on wave height (HS), power (P), and mean wave direction (MWD) through Fuzzy Logic transformation and overlaying techniques. Seasonal and annual variations reveal that HS ranges from 0.07 to 1.9 m, peaking during the summer with an average of 0.7 m, while winter and spring exhibit calmer conditions with an average HS of 0.4 m. Wave power (P) shows a marked increase in summer, reaching up to 10.2 kW/m, with an annual mean ranging from 0.02 to 5.3 kW/m. Wave direction shifts seasonally, predominantly from 171° to 247° during winter and spring, and between 189° to 191° in summer and autumn. Spatial analysis highlights intensified hydrodynamic activity in the eastern region, influenced by oceanic conditions and the monsoon, while the western sector remains relatively calmer. Omega-shaped coasts and bays demonstrate more stable conditions, whereas headlands and capes experience significant hydrodynamic intensification. These findings provide critical insights for coastal management and sustainable development, enabling policymakers to balance maritime potential with risk mitigation. By integrating hydrodynamic dynamics into coastal planning, resilient strategies can be established for the sustainable utilization of the Makran region’s resources.

Keywords

Main Subjects


  1. United Nations. (2017). Factsheet: People and oceans. In Proceedings of the Ocean Conference (pp. 1–7).
  2. Stewart, R. H., Introduction to physical oceanography, 2008.
  3. Boye, C. B., Appeaning Addo, K., Wiafe, G., & Dzigbodi-Adjimah, K, (2018). Spatio-temporal analyses of shoreline change in the Western Region of Ghana. Journal of Coastal Conservation, 22(4), 769–776. DOI: 10.1007/s11852-018-0607-z
  4. Church, J., Wilson, S., Woodworth, P., & Aarup, T, (2007). Understanding sea level rise and variability. Eos, Transactions American Geophysical Union, 88(4), 43–43. DOI: 10.1029/2007EO040008
  5. Bird, E. C. F., Coastal geomorphology: an introduction. John Wiley Sons, 2008
  6. Passeri, D. L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Alizad, K., & Wang, D. (2015). The dynamic effects of sea level rise on low‐gradient coastal landscapes: A review. Earth’s Future, 3(6), 159–181. DOI: 10.1002/2015EF000298
  7. Ye, X., & Niyogi, D, (2022). Resilience of human settlements to climate change needs the convergence of urban planning and urban climate science. Computational Urban Science, 2(1), 6. DOI: 10.1007/s43762-022-00035-0
  8. Savastano S, Gomes da Silva P, Sánchez JM, Tort AG, Payo A, Pattle ME, Garcia-Mondéjar A, Castillo Y, Monteys X, (2024). Assessment of Shoreline Change from SAR Satellite Imagery in Three Tidally Controlled Coastal Environments. Journal of Marine Science and Engineering, 12(1), 163. DOI: 10.3390/jmse12010163.
  9. Akbarian, M., & Khoorani, A, (2022). The impacts of climate variability on the wind erosion potentials: western region of Makran coastal plain, South of Iran. Theoretical and Applied Climatology, 149(3–4), 1209–1221. DOI:10.1007/s00704-022-04094-5
  10. Allahdadi, M. N., Chaichitehrani, N., Allahyar, M., & McGee, L, (2017). Wave Spectral Patterns during a Historical Cyclone: A Numerical Model for Cyclone Gonu in the Northern Oman Sea. Open Journal of Fluid Dynamics, 07(02), 131–151. DOI:10.4236/ojfd.2017.72009
  11. Moghaddam, E. I., Allahdadi, M. N., Hamedi, A., & Nasrollahi, A, (2018). Wave-induced currents in the northern Gulf of Oman: a numerical study for Ramin Port along the Iranian coast. American Journal of Fluid Dynamics, 8(1), 30–39. DOI:10.5923/j.ajfd.20180801.04
  12. Sayehbani, M., Ghaderi, D, (2019). Numerical Modeling of Wave and Current Patterns of Beris Port in East of Chabahar-Iran. International Journal Of Coastal, Offshore And Environmental Engineering, 3(1), 21–29. DOI: 10.22034/ijcoe.2019.149314
  13. Ghaderi, D., & Rahbani, M, (2023). Simultaneous employment of hydrodynamical simulation and RS imageries for analyzing the influence of an anthropogenic construction on shoreline transformation. Journal of Hydraulic Structures, 9(3), 14–31. DOI: 10.22055/jhs.2023.44699.1262
  14. Armanfar, M., Goharnejad, H., Niri, M. Z., & Perrie, W, (2019). Assessment of coastal vulnerability in Chabahar Bay due to climate change scenarios. Oceanologia, 61(4), 412–426. DOI:10.1016/j.oceano.2019.03.001
  15. Siahsarani, A., Karami Khaniki, A., Aliakbari Bidokhti, A.-A., & Azadi, M, (2021). Numerical Modeling of Tropical Cyclone-Induced Storm Surge in the Gulf of Oman Using a Storm Surge–Wave–Tide Coupled Model. Ocean Science Journal, 56(3), 225–240. DOI: 10.1007/s12601-021-00027-x
  16. Foroutani, R., Rahbani, M., & Pakhirehzan, M, (2018). Investigating the Storm Surge Due to Tropical Cyclone Ashobaa in the Coastal Areas of Bushehr and Chabahar. Journal of Oceanography, 8(32), 9–19. DOI: 10.29252/joc.8.32.9
  17. Ghanavati, E., Shah-Hosseini, M., Marriner, N. (2021). Analysis of the Makran Coastline of Iran’s Vulnerability to Global Sea-Level Rise. Journal of Marine Science and Engineering, 9(8), 891. DOI: 10.3390/jmse9080891
  18. Hafeznia M.R, Alamdar E., Rezaei Seke Ravani D, (2020). The Role of Developing the Makran Coast and Iran’s Marine Orienteering Strategy on the Development of the Eastern Axis of the Country. Political Organizing of Space, 2(2).
  19. Chaichitehrani, N., & Allahdadi, M. N. (2018). Overview of wind climatology for the Gulf of Oman and the northern Arabian Sea. American Journal of Fluid Dynamics, 8(1), 1–9. DOI: 10.5923/j.ajfd.20180801.01
  20. Pous, S. P., Carton, X., & Lazure, P, (2004). Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 2. Gulf of Oman. Journal of Geophysical Research: Oceans, 109(C12). DOI: 10.1029/2003JC002146
  21. Rashidi, A., Dutykh, D., Shomali, Z. H., Keshavarz Farajkhah, N., & Nouri, M. (2020). A Review of Tsunami Hazards in the Makran Subduction Zone. Geosciences, 10(9), 372. DOI: 10.3390/geosciences10090372
  22. Salah, P., Sasaki, J., & Soltanpour, M, (2021). Comprehensive Probabilistic Tsunami Hazard Assessment in the Makran Subduction Zone. Pure and Applied Geophysics, 178(12), 5085–5107. DOI: 10.1007/s00024-021-02725-y
  23. Pourkerman, M., Marriner, N., Hamzeh, M.-A., Lahijani, H., Morhange, C., Amjadi, S., et al. (2022). Socioeconomic impacts of environmental risks in the western Makran zone (Chabahar, Iran). Natural Hazards, 112(2), 1823–1849. DOI: 10.1007/s11069-022-05230-0
  24. He, W., Liu, J., Huang, Y., & Cao, L, (2020). Sea Level Change Controlled the Sedimentary Processes at the Makran Continental Margin Over the Past 13,000 yr. Journal of Geophysical Research: Oceans, 125(3). DOI: 10.1029/2019JC015703
  25. Group-DHI. (2017). MIKE 21 Spectral Wave Module, Scientific Documentation. Hørsholm, Denmark: DHI Water Environment Health.
  26. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., & Janssen, P, Dynamics and modelling of ocean waves, 1996. DOI: 10.1017/CBO9780511628955
  27. Tolman HL. (2009). User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note, MMAB contribution.;276(220).
  28. Delft, T. (2014). SWAN User Manual Cycle III version 41.01. Delft, Nederlands: Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section.
  29. (2014). TOMAWAC wave model.
  30. Moore, AM., Arango, HG., Broquet, G., Edwards, C., Veneziani, M., Powell, B., et al. (2011). The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems. Progress in Oceanography. 91(1):50–73. DOI: 1016/j.pocean.2011.05.004
  31. Pakhirehzan, M., Rahbani, M., & Malakooti, H. (2018). Numerical Study of Winter Shamal Wind Forcing on the Surface Current and Wave Field in Bushehr’s Offshore Using MIKE21. International Journal of coastal and offshore engineering, 2(2), 57–65. DOI: 10.29252/ijcoe.2.2.57
  32. Wu, C., Wan, J., Wang, Y., Bi, Z., Wang, Y., Ren, X. (2024). Evaluation of water quality fluctuation in the tidal reach under the impact of on shore wastewater discharges based on MIKE 21 model in Dongguan, China. Physics and Chemistry of the Earth, Parts A/B/C. 103730. DOI:1016/j.pce.2024.103730
  33. Upadhyaya, S., Rao, S., Rao, M. (2024). Assessment of wind and wave energy potential along the Indian coast. Cogent Engineering. 31;11(1). DOI:1080/23311916.2024.2316950
  34. Djili, M., Mezouar, K., Benaissa, N. (2024). Wave Climate, Sediment Transport and Shoreline Evolution in the West Littoral of Algeria. Ocean Science Journal. 28;59(3):39. DOI:1007/s12601-024-00165-y
  35. Ghaderi, D. (2024). Mapping the shoreline risk assessment of oil spill in the eastern region of Qeshm channel. Marine Pollution Bulletin. 206:116714. DOI: 10.1016/j.marpolbul.2024.116714
  36. Remya, P. G., Kumar, R., & Basu, S. (2014). An assessment of wind forcing impact on a spectral wave model for the Indian Ocean. Journal of Earth System Science, 123(5), 1075–1087. DOI: 10.1007/s12040-014-0450-z
  37. Jadidoleslam, N., Özger, M., & Ağıralioğlu, N, (2016). Wave power potential assessment of Aegean Sea with an integrated 15-year data. Renewable Energy, 86, 1045–1059. DOI: 10.1016/j.renene.2015.09.022
  38. Abdollahzadehmoradi, Y., Özger, M., & Altunkaynak, A, (2018). Long-Term Macro-Scale Assessment of Wave Power of Black Sea by an Optimized Numerical Model. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 42(4), 391–414. DOI: 10.1007/s40996-018-0108-1
  39. Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., et al. (2005). The ERA‐40 re‐analysis. Quarterly Journal of the Royal Meteorological Society, 131(612), 2961–3012. DOI: 10.1256/qj.04.176
  40. Anton, I. A., Rusu, L., Anton, C., Anton, Rusu, & Anton, (2019). Nearshore wave dynamics at Mangalia beach simulated by spectral models. Journal of Marine Science and Engineering, 7(7), 206. DOI:10.3390/jmse7070206
  41. Mahmoodi, A., Lashteh Neshaei, M. A., Mansouri, A., & Shafai Bejestan, M, (2020). Study of Current- and Wave-Induced Sediment Transport in the Nowshahr Port Entrance Channel by Using Numerical Modeling and Field Measurements. Journal of Marine Science and Engineering, 8(4), 284. DOI: 10.3390/jmse8040284
  42. Kalra, R., & Deo, M. C. (2007). Derivation of coastal wind and wave parameters from offshore measurements of TOPEX satellite using ANN. Coastal Engineering, 54(3), 187–196. DOI: 10.1016/j.coastaleng.2006.07.001
  43. Cox, A. T., & Swail, V. R. (2001). A global wave hindcast over the period 1958--1997: Validation and climate assessment. Journal of Geophysical Research, 106(C2), 2313–2329. DOI: 10.1029/2001JC000301
  44. Mahjoobi, J., Etemad-Shahidi, A., & Kazeminezhad, M. H, (2008). Hindcasting of wave parameters using different soft computing methods. Applied Ocean Research, 30(1), 28–36. DOI: 10.1016/j.apor.2008.03.002
  45. Rusu, E. (2018). An analysis of the storm dynamics in the Black Sea. The Romanian Journal of Technical Sciences. Applied Mechanics, 63, 131–146.
  46. Dávila-Lamas, AD., Carbajal-Hernández, JJ., Sánchez-Fernández, LP., Niebla-Zatarain, VB., Hoil-Rosas, CA. (2022). Assessment of Coastal Locations Safety Using a Fuzzy Analytical Hierarchy Process-Based Model. Sustainability. 14;14(10):5972. DOI: 10.3390/su14105972
  47. Zadeh, L. A. (1996). FUZZY SETS (pp. 394–432). DOI: 10.1142/9789814261302_0021
  48. Tabrizi, N., Taghvaei, M., & Varesi, H. R, (2012). A fuzzy application on MICE hosting: An Iranian case study for locating suitable areas based on P.L Indexes. Management Science Letters, 2(2), 503–510. DOI: 10.5267/j.msl.2011.12.024
  49. Ghadamode, V., Srivastava, K., Singh, R. K., & Pandey, A. K, (2022). Spatial analysis techniques for tsunami vulnerability and inundation mapping of Andaman region using remote sensing, GIS, AHP, and Fuzzy logic methods. Environmental Earth Sciences, 81(17), 427. DOI: 10.1007/s12665-022-10548-w
  50. Lee, S. (2007). Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology, 52(4), 615–623. DOI: 10.1007/s00254-006-0491-y
  51. Obakrim, S., Ailliot, P., Monbet, V., & Raillard, N, (2023). Statistical modeling of the space–time relation between wind and significant wave height. Advances in Statistical Climatology, Meteorology and Oceanography, 9(1), 67–81. DOI: 10.5194/ascmo-9-67-2023
  52. Falnes, J, (2007). A review of wave-energy extraction. Marine Structures, 20(4), 185–201. DOI: 10.1016/j.marstruc.2007.09.001
  53. Ozkan, C., Perez, K., & Mayo, T. (2020). The impacts of wave energy conversion on coastal morphodynamics. Science of The Total Environment, 712, 136424. DOI: 10.1016/j.scitotenv.2019.136424
  54. Ozkan, C., Mayo, T., & Passeri, D. L, (2022). The Potential of Wave Energy Conversion to Mitigate Coastal Erosion from Hurricanes. Journal of Marine Science and Engineering, 10(, 143. DOI: 10.3390/jmse10020143
  55. Chaigneau, A. A., Law-Chune, S., Melet, A., Voldoire, A., Reffray, G., & Aouf, L, (2023). Impact of sea level changes on future wave conditions along the coasts of western Europe. Ocean Science, 19(4), 1123–1143. DOI: 10.5194/os-19-1123-2023
  56. Falqués, A., Calvete, D., & Ribas, F, (2011). Shoreline Instability due to Very Oblique Wave Incidence: Some Remarks on the Physics. Journal of Coastal Research, 27(2), 291. DOI: 10.2112/JCOASTRES-D-09-00095.1
  57. Ashton, A. D., & Murray, A. B, (2006). High‐angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. Journal of Geophysical Research: Earth Surface, 111(F4). DOI: 10.1029/2005JF000423
  58. Bonham-Carter, G, Geographic information systems for geoscientists: modelling with GIS. Elsevier, 1994. DOI: 10.1016/C2013-0-03864-9
  59. Moradpanah, M., Monavari, S. M., Shariat, S. M., Khan Mohammadi, M., & Ghajar, I, (2022). Evaluation of Ecological Vulnerability of Coasts of the Caspian Sea Based on Multi-criteria Decision Methods (Iran). Journal of the Indian Society of Remote Sensing, 50(12), 2479–2502. DOI: 10.1007/s12524-022-01612-w
  60. Vafai, F., Hadipour, V., & Hadipour, A, (2013). Determination of shoreline sensitivity to oil spills by use of GIS and fuzzy model. Case study – The coastal areas of Caspian Sea in north of Iran. Ocean & Coastal Management, 71, 123–130. DOI: 10.1016/j.ocecoaman.2012.05.033
  61. Sadeghi, B., & Khalajmasoumi, M. (2015). A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment. Renewable and Sustainable Energy Reviews, 43, 818–831. DOI: 10.1016/j.rser.2014.11.079
  62. Saket, A., Etemad-Shahidi, A, (2012). Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renewable Energy, 40(1), 90–97. DOI: 10.1016/j.renene.2011.09.024
  63. Srinivas, G., Remya, PG., Malavika, S., Nair TMB. (2020). The influence of boreal summer intra-seasonal oscillations on Indo-western Pacific Ocean surface waves. Scientific Reports. 28;10(1):12631. DOI: 10.1038/s41598-020-69496-9
  64. Chitrakar, P., Baawain, M. S., Sana, A., & Al-Mamun, A, (2020). Hydrodynamic measurements and modeling in the coastal regions of Northern Oman. Journal of Ocean Engineering and Marine Energy, 6(2), 99–119. DOI: 10.1007/s40722-020-00161-z
  65. Ghaderi, D., & Rahbani, M, (2024). Evaluating the shoreline vulnerability of eastern coast of Makran employing geomorphological and hydrodynamic parameters. Journal of Earth System Science, 133(2), 48. DOI: 10.1007/s12040-024-02266-7