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Abstract 
The high costs of constructing water supply networks have shifted design priorities towards 

minimizing leakage and enhancing reliability. This study applies nonlinear programming (NLP) 

to optimize a water distribution network (WDN), focusing on leakage reduction and improved 

performance. By integrating flow-pressure dynamics, the approach incorporates a reliability 

constraint within Tehran’s WDN in Iran. High-risk nodes, identified based on leakage potential 

using WaterGEMS software, serve as key data points for the NLP model. The findings show that 

NLP significantly improves pressure distribution across the network, contributing to more stable 

pressure levels, which is critical for operational efficiency. Furthermore, this method enhances 

the network’s resilience index, effectively reducing the likelihood of leakage and pipe failure. 

The NLP-optimized network design yields a notable 8.12% reduction in overall pipe costs, 

indicating both financial and operational advantages of this approach. By addressing these high-

risk areas with targeted interventions, the NLP model contributes to a more sustainable network 

infrastructure that minimizes maintenance needs and extends network lifespan. This 

comprehensive optimization model thus offers a practical, cost-effective solution for modern 

water distribution challenges, balancing initial investment with long-term network reliability and 

leakage control. 
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1. Introduction  
WDNs assume a pivotal role in the advancement of urban infrastructure systems, with the 

primary goal of facilitating the conveyance of water to consumption nodes while concurrently 

adhering to engineering considerations such as appropriate pressure and velocity. WDNs can be 
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configured as either a single reservoir system or a multi-reservoir system, encompassing 

consumption nodes and interconnected pipes. Frequently, these interconnections form closed 

loops, thus constituting a closed-loop network. The conveyance of water within a WDN can be 

achieved through either gravitational forces or a dedicated pumping system. A prototypical 

WDN is characterized as an intricate system comprising hydraulic control elements 

interconnected through nodes, facilitating the transportation of water volumes from the source 

node to the consumer node [1].  The provision of safe and accessible water, essential for 

drinking, household activities, and recreational pursuits, holds significant implications for public 

health. Enhanced management of water resources stands to expedite the economic development 

of nations and contribute to poverty alleviation. As of 2017, approximately 5.3 billion 

individuals benefitted from access to secure drinking water services, leaving a remaining 2.2 

billion people devoid of adequately managed water services. Projections indicate that by the year 

2025, nearly half of the global population will reside in regions characterized by water scarcity 

[2]. Hence, the evaluation of water efficiency becomes imperative, with the enhancement of the 

water supply network efficiency deemed an unavoidable necessity. Optimization emerges as one 

of the most effective methods to achieve this objective [3].  Conversely, the considerable 

challenge posed by water losses attributable to leakages and pipe ruptures constitutes a 

prominent aspect in the administration of urban Water Distribution Systems (WDSs) [4]. 

Consequently, mitigating leakage, estimated to range between 35% to 60% in various countries, 

emerges as a paramount challenge, particularly in aging networks and areas characterized by 

elevated service pressures [5].  The behavior of WDSs is frequently characterized by 

nonlinearity due to their composition of numerous elements, including pipes, nodes, reservoirs, 

pumps, valves, among others [6]. The frequency of leakages and pipe bursts is contingent upon 

the pressure distribution within the network, thereby rendering pressure a critical variable in 

WDSs [7]. Implementing Pressure and Discharge Management (PDM) emerges as one of the 

most efficacious approaches to enhance productivity and reduce leakage within the network [8].  

The optimization of water distribution systems represents a complex and intellectually engaging 

research domain. Early methodologies included deterministic approaches such as dynamic 

programming (DP) [9-10], hierarchical control methods, linear programming (LP) [11-13], and 

NLP [14]. These foundational techniques laid the groundwork for the evolution of more 

sophisticated optimization strategies within the field [15]. Several investigations have 

demonstrated that the application of optimization techniques, including linear programming 

(LP), NLP, and heuristic methods, yields enhanced pressure management within WDSs and 

augments network resiliency. Among diverse objective functions, such as minimizing total 

leakage or nodal excess pressures, the latter proves to be more efficacious in optimizing WDS 

productivity [16, 17]. Soltanjalili et al. (2013) devised a methodology for hydraulic analysis of 

the network, specifically addressing the authentic nodal pressure-demand relationship during 

failure conditions [18].  Belotti et al. (2012) introduced two overarching categories of solution 

methodologies for Mixed-Integer Nonlinear Programming (MINLP): single-tree and multi-tree 

methods [19]. Pecci et al. (2015) implemented and assessed a direct solver for MINLP as well as 

two distinct reformulation methods tailored for solving sequences of conventional NLPs [20].  

Liang et al. (2016) introduced a convex model for the optimal design of WDSs employing the 

MINLP approach. In this methodology, head loss equations were reformulated into convex 

inequalities [21].  

Singh and Kekatos (2019) formulated the intricate task of optimal water flow scheduling as a 

mixed-integer non-convex problem. This formulation integrates essential flow and pressure 

constraints pertinent to fixed-speed pumps, tanks, reservoirs, and pipes. The adapted problem 
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structure allowed for its solvability as a mixed-integer second-order cone program, ensuring the 

derivation of WDS-feasible solutions under specific conditions [22]. Jimenez-Cabas et al. (2018) 

introduced a methodology for leak localization in WDSs utilizing flow readings [23]. Awwalu et 

al. (2023) asserted the critical importance of ensuring effective water supply in response to the 

challenges posed by a growing population and increasing water scarcity. They proposed a multi-

objective optimization model, encompassing various constraints, decision variables, and 

objectives related to cost and reliability. Leveraging mixed-integer Linear Programming (LP), 

the model aimed to optimize the allocation of water resources, minimize costs, and enhance the 

reliability of water distribution systems [24]. In a separate study, Biscos et al. (2003) delineated 

an operational optimization methodology for potable water distribution networks. Primary 

objectives included the maximization of low-cost power usage and the maintenance of target 

chlorine levels at delivery points [25]. Over time, with the aging of infrastructure and the 

potential impact of natural disasters such as earthquakes, the likelihood of pipe breakage 

increases [26]. The assessment of water distribution system performance has been conducted 

based on three criteria: reliability, flexibility, and vulnerability [27]. In order to effectively 

respond to perceived or actual shocks, the system necessitates absorptive, adaptive, and 

restorative capacities of flexibility [28]. Butler et al. (2016) specifically defined resilience in 

WDSs as the degree to which the system minimizes the magnitude of service failure over its 

design life when subjected to exceptional conditions [29].  Failure modes within WDSs can be 

broadly classified into structural failure and functional failure [30]. The system's response to 

pipe failure serves as an indicator of its resilience to the loss of structural connectivity [31]. An 

investigation revealed that the depth of pipe establishment, corrosion, obsolescence of pipes, and 

the use of improper pipe types were identified as the most significant causes of failures in the 

Ahvaz WDS during the period of 2006-2008 [32].  Morani et al. [33] investigated optimizing 

water distribution networks by integrating pumps as turbines (PATs) and pressure-reducing 

valves (PRVs) to enhance energy production and reduce water waste. Using a new mixed-integer 

nonlinear model, their approach demonstrated significant improvements in water and energy 

savings compared to existing methods, highlighting the feasibility of recoverable energy 

utilization. Mohammadi et al. [34] evaluated replacing pressure-reducing valves (PRVs) with 

pumps as turbines (PATs) in water distribution networks using genetic algorithms and 

WaterGEMS modeling. Results showed a 33% reduction in leakage, a 0.41 increase in Nodal 

Pressure Reliability Index (NPRI), and a 58% decrease in average network pressure, 

demonstrating PATs' effectiveness in pressure control and energy recovery. 

This study proposes a novel and comprehensive approach to optimizing urban water 

distribution networks by leveraging NLP integrated with hydraulic simulation tools and 

advanced performance indices. Unlike conventional optimization methods, this research 

uniquely incorporates reliability and failure indices as key constraints, addressing the dual 

challenges of leakage mitigation and network resiliency enhancement. By utilizing WaterGEMS 

software for hydraulic simulation and integrating its outputs into the NLP optimization 

framework, the methodology ensures a more precise identification of high-risk nodes and a 

targeted intervention strategy. This innovative approach not only optimizes pressure distribution 

but also introduces a systematic framework that balances operational efficiency, long-term 

sustainability, and resilience under varying demand and network conditions. The research thus 

pioneers a new standard in urban water network management, offering a versatile and effective 

solution to address both current and future challenges in water supply systems. 
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2. Materials and Methods  

2.1. Case Study 
Tehran, the capital of Iran, qualifies as a megacity with a population of approximately 8.9 

million, situated at coordinates 35.69˚N and 51.42˚E. It holds paramount significance politically, 

socially, and economically, standing as the most important and populous city in Iran. 

Consequently, the effective management of its extensive water network, comprising multiple 

reservoirs, and an intricate network of pipes, pumps, valves, etc., is imperative for ensuring 

proper urban operation and mitigating potential social and political challenges. Due to the 

absence of comprehensive data for the entire network, a specific segment of its WDS was chosen 

for simulation within the Water GEMS simulation model. The proposed NLP model was then 

applied to this selected segment. Ultimately, the results obtained from these models were 

compared to derive optimized conditions for the designated part of the network (See Fig. 1). 

 

  
 Figure 1. Location of the selected part of Tehran WDS 

 

The study area exhibits high population density, with approximately 11,800 residents per 

square kilometer. The selected WDS, situated in the northwest of Tehran, spans an area of 

approximately 546 hectares, catering to a population of around 180,000 people. This WDS 

operates on a gravity-based water supply system sourced from four reservoirs, encompassing 

1,124 pipes and connecting to 988 nodes (referring to Fig. 2). The average base water demand 

for the area is 495.3 liters per second. Behzadian et al. (2008) introduced a methodology for 

estimating the roughness coefficients of pipes. This approach, based on the primary 

characteristics of pipes and considerations related to water quality, facilitates the estimation of 

roughness coefficients, specifically the Hazen-Williams C-factor, for the pipes within the 

network [35]. 

 
 Figure 2. Simulation of the selected WDS (Water GEMS model) 
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2.2. Simulation Model 
WaterGEMS stands out as a robust software tool designed for hydraulic simulation in WDSs. 

One of its noteworthy features is the capacity for Pressure Dependent Demand (PDD) analysis, 

wherein demand varies as a function of pressure. PDD can be characterized in two primary 

manners: a pressure-demand relationship utilizing a power function, and a pressure-demand 

piecewise linear curve. A conventional power function for such analysis is represented as 

follows [36]: 

Q
i
=KiPi

0.5 (1) 

Where Ki is leakage coefficient of node i, Pi is the pressure of node i and Qi is leakage rate of 

node i. Leakage coefficient, K, has been considered as decision variable for optimization process 

[39]. 

Various scenarios, encompassing hourly, daily, and extended period simulation (EPS) 

scenarios, are taken into account to model diverse demand conditions within the network. 

Hourly and daily scenarios are constructed by applying incremental coefficients to base demands 

for hourly and daily simulations, respectively. In this study, aligned with the water consumption 

pattern in the study area, the incremental coefficient is set at 1.3 for both of these scenarios. The 

EPS scenario is formulated by multiplying incremental and decreasing coefficients for different 

hours of the day. These coefficients are derived from the consumption pattern provided by the 

local WDS management organization. 

 

2.3. Optimization Model 
The Lingo software is employed to formulate an NLP optimization model for the chosen 

WDS. The research process, encompassing problem definition, data collection, methodology, 

evaluation criteria, and output (problem objective), is succinctly summarized in Table 1. 

 
 Table 1. Problem Methodology 

Project 

definition 

Objective 1: Investigation of hydraulic 

effects of pressure distribution on leakage in 

WDS 

Recognize sensitive and critical points 

Objective 2: reduction of WDS failure risk 
Improving network resiliency through 

optimization of pressure distribution 

Input data 

Topographic and WDS characteristic maps GIS environment 

Tables of water consumption by network 

subscribers 

Tables prepared by Tehran Regional 

Water Organization 

Methodology 

Simulation of the selected WDS WDS modelling (WaterGEMS v8i) 

Creating the Optimization Model 
NLP modelling 

(Lingo 17) 

Evaluation 

criteria 

Classification 
Return periods of 5, 10, 25, 50 and 100 

years 

Assessment 

Compare with allowed pressures 

Compare the pressures and the total 

cost with the simulation model 

Output 

For Objective 1: 
Checking the adequacy of pressures 

and finding critical points 

For Objective 2: 
Computing the resiliency index for the 

selected WDS 
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2.4. Problem Theories 
The pressure within a pipe is defined as the average pressure between the two pipe joints. The 

reduction of nodal pressures plays a crucial role in minimizing total leakage within a WDS. The 

objective function of the proposed model, aimed at minimization, is articulated as follows in Eq. 

2: 

 

Z=B ∑ ∑ CiLiPij
η

k

i=1

h

j=1

 i∈I={1, ⋯, k} , j∈J={1, ⋯, h} (2) 

 

Where Pij is defined as: 

 

Pij=Φ(ELi, Qij
, ELmj) m∈M={1, ⋯, n} (3) 

 

The values of leakage coefficients are considered as decision variable. Constraints of the 

problem are: 

 

∑ Vmj+1

n

m=1
= ∑ Vmj

n

m=1

+ ∑ Imj

n

m=1
-QT

j
 (4) 

Pmin<Pij<Pmax (5) 

∑ ∑ Imj

h

j=1

n

m=1
<Iday (6) 

FIij=Q
ij
(Pmin-Pij) (7) 

FIj=
∑ FIij

k
i=1

∑ Q
ij
Pmin

k
i=1

 (8) 

0≤FIij<FImax (9) 

RIj=
∑ FIij

k
i=1

∑ FIij
k
i=1

FIj
- ∑ Q

mj
ELm

n
i=1

 
(10) 

RIj>RImin (11) 

 

Where B is penalty factor of value 10000, i is node number of network, h is the hours number 

of selected performance period, n is the number of the reservoirs, j is time counter, C is constant 

value of pressure-leakage relationship in node, L is the pipe length (m), EL is node elevation 

(m), Q is demand discharge (m3/s), η is power of pressure-discharge relationship of value 1.18, P 

is pressure (pa), V is water volume in the reservoir (m/s), QT is total demand discharge (m3/s), Q 

is output discharge of the reservoir (m3/s), Pmin and Pmax are the minimum and maximum pressure 

in each node (pa), I is input discharge into the reservoir (m3/s), Iday is daily maximum required 

water volume (m3), RI is resiliency index of WDN, RImin is the minimum value of resiliency 

index, FI is failure index and FImax is the maximum allowable failure index. Failure and 

resiliency indices are utilized to accomplish minimum level performance of WDN system under 

desired conditions. Pressure lower than the minimum will lead to system failure. Introduced by 

ASCE (1998), resiliency is described the required time to recover from a failure situation to 

normal one [38].  
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The objective function (Eq. 2) will be subject to multiplication by a penalty coefficient in 

case its constraints are not fulfilled. The penalty coefficient is assigned a substantial value in the 

order of 104 to discourage non-reasonable or non-optimal solutions. Nodal pressure is 

determined as a function of the node elevation, water demand, and water level in each storage 

tank (Eq. 3), and these values are obtained from the simulation model. The daily input water to 

the tanks and the bounds on nodal pressures serve as constraints for the proposed algorithm. 

Solving MINLP problems poses significant challenges, and various methods have been 

employed to address them. In WDSs, the inherent non-convex nature of the problem implies that 

all methods converge to local minimum points under appropriate assumptions. The quality of the 

solution is contingent upon the initial point selected. Consequently, it is crucial to acknowledge, 

as highlighted by Pecci et al. [20] , that comparing different approaches should consider this 

characteristic. If a solution is obtained through multiple random initial guesses and yields an 

average zone pressure close to the best-known solution, it can be deemed acceptable. In this 

study, potential leakage points, identified as nodes with pressures exceeding the maximum 

allowable, are determined using the simulation model. Subsequently, an NLP optimization 

model has been constructed utilizing Lingo software. The optimization model incorporates pipe 

materials and diameters as variables, aiming to achieve an optimized situation concerning 

pressure distribution and network reliability. Network reliability is quantified through the 

resiliency index, which is a function of the system hydraulic failure index (Eq. 8). The failure 

index, in turn, is expressed as a function of nodal pressures and demands, as outlined in Eqs. 5 

and 6. 

 

2.5. Statistical evaluation criteria 
Multivariate techniques encompass methods for classifying and conducting diagnostic 

analysis, which involve the segregation of diverse groups of objects or observations and the 

allocation of new objects to pre-established categories. Diagnostic analysis involves combining 

variables x1, x2, ..., xn to generate a novel variable, denoted as y. This new variable, referred to 

as the recognition function, is formulated to ensure that the value assigned to each participant 

effectively delineates individuals into distinct categories. The primary goal is to create a robust 

framework for categorizing and identifying patterns within multivariate datasets.  To express the 

concept described above mathematically, let's consider x1, x2, …, xn as descriptive variables and 

y as a dependent variable of a multilevel qualitative type. The objective of diagnostic analysis is 

to find a linear function represented as: 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑛𝑥𝑛 (12) 

 

In this equation, y is the dependent variable, and β0, β1, …, βn are coefficients corresponding 

to each descriptive variable x1, x2, …, xn. The goal of diagnostic analysis is to determine the 

optimal values for the coefficients β to create a linear function that effectively captures the 

relationship between the descriptive variables and the multilevel qualitative dependent variable 

y. This function is designed to assist in categorizing and differentiating observations based on 

the provided descriptive variables.  

In scenarios where the dependent variable possesses k levels, the objective is to assign new 

observations x1, x2, …, xn to one of the k groups based on y. The purpose of diagnostic analysis 

is to categorize items (such as people, customers, objects, etc.) into two or more groups based on 

a set of characteristics that describe each item (e.g., gender, age, income, weight). Generally, we 

allocate an item to predefined groups based on our observations, ensuring that each item belongs 
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to only one group. Periods where it is impossible to assign items to groups should be excluded 

from the analysis to prevent erroneous results. These instances can be identified after 

establishing the diagnostic equations for group membership. 

One of the primary applications of this technique is the classification of subjects into 

designated groups. Common statistical criteria for selection include Wilks Lambda, Pillai's 

Trace, Mahalanobis square distance, and the F-group ratio. Wilks Lambda is a widely used 

statistical criterion in this analysis. In the presented case, water consumption data for each node 

in liters per second (Lit/s) was randomly divided into three groups. Using SPSS software, 

diagnostic analysis was conducted on the data, resulting in a correct grouping rate of 61.2%. 

It is worth noting that in the studied WDN, no PRVs were considered. The primary reason for 

not including PRVs is that the optimization approach employed in this research focuses on 

improving nodal pressures and reducing leakage through adjustments to pipe materials and 

diameters. By optimizing these parameters, the need for additional pressure management 

devices, such as PRVs, is minimized. Furthermore, the selected network segment operates under 

gravity-based pressure control, which inherently reduces the necessity for PRVs.   

 

3. Results and discussion  
For statistical assessment, the water consumption data for each node in liters per second 

(Lit/s) were initially randomly divided into three groups. Subsequently, using SPSS software, 

diagnostic analysis was executed on the data. The results of this test indicated that 61.2% of the 

data groupings were correct, as depicted in Table 2. To improve the accuracy of grouping, 

corrections were made for some data that were initially placed in the wrong group based on 

Wilks Lambda. Following the corrections, a second diagnostic analysis test was performed, 

resulting in an increased grouping accuracy of 95.1%, as illustrated in Table 3. Ultimately, the 

data were categorized into three groups, and the discharge range for each group is presented in 

Table 4. 
 Table 2. Data Classification Results 

Classification Results a,c 

  Zone 
Predicted Group Membership Total 

1 2 3  

Original 

Count 

1 227 20 3 250 

2 35 34 16 85 

3 92 42 67 201 

% 

1 90.8 8.0 1.2 100.0 

2 41.2 40.0 18.8 100.0 

3 45.8 20.9 33.3 100.0 

Cross-validated b 

Count 

1 227 20 3 250 

2 35 34 16 85 

3 92 42 67 201 

% 

1 90.8 8.0 1.2 100.0 

2 41.2 40.0 18.8 100.0 

3 45.8 20.9 33.3 100.0 

a. 61.2% of original grouped cases correctly classified. 

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified 

by the functions derived from all cases other than that case. 

c. 61.2% of cross-validated grouped cases correctly classified. 
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Table 3. Re-diagnostic analysis on data grouping after Wilks Lambda correction 

Classification Results a,c 

  zone 
Predicted Group Membership 

Total 
1 2 3 

Original 

Count 

1 339 0 0 339 

2 15 128 0 143 

3 0 11 43 54 

% 

1 100.0 0 0 100.0 

2 10.5 89.5 0 100.0 

3 0 20.4 79.6 100.0 

Cross-validated b 

Count 

1 339 0 0 339 

2 15 128 0 143 

3 0 12 42 54 

% 

1 100.0 0 0 100.0 

2 10.5 89.5 0 100.0 

3 0 22.2 77.8 100.0 

a. 95.1% of original grouped cases correctly classified. 

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified 

by the functions derived from all cases other than that case. 

c. 95.0% of cross-validated grouped cases correctly classified. 

 
Table 4. Flow range in each group in Lit/s 

In Figure 3, the network pressure values are compared between the different scenarios of the 

simulation model. It can be seen that the EPS scenario plays the most important role and is the 

dominant scenario. Thus, its results should be compared with the results of the NLP method in 

which the pipe diameters and the pipe materials are defined as variables. The maximum and 

minimum amounts of nodal pressures in EPS scenario are 67.8 and 10.8 meters, respectively. 

The allowed pressure according to the regional standards for water network design, varies 

between 15 and 60 meters. 

 
 Figure 3. Comparison of nodal pressures for different scenarios in simulation model. 
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Fig. 4 provides a comparison of nodal pressures, sorted in ascending order, between the EPS 

scenario and the NLP model. The comparison reveals that the NLP model has not only decreased 

the maximum nodal pressures by approximately 17.2%, thus reducing the risk of pipe breaks, 

but also enhanced network performance by increasing the minimum nodal pressures from 5 

meters to 11 meters. Table 5 presents detailed information regarding pipes, including maximum 

pressure values and total costs, for both the simulation and optimization models. The table 

highlights that, in comparison to the simulation model, the NLP approach has reduced the 

number of pipe sizes from 15 to 7 sizes and lowered the total cost of pipes by approximately 

12.85%. This demonstrates the effectiveness of the NLP model in optimizing the system while 

minimizing costs and improving network performance. 

 

 
 Figure 4. Comparison of nodal pressures (sorted ascending) in EPS scenario (simulation model) 

and NLP optimization model 

 
 Table 5. Comparison of the network characteristics in simulation and optimization models 

Characteristics Simulation Model 
Optimization Model 

(NLP) 

Pipe Materials 

Ductile Iron (DI) 

Polyethylene (PE) 

Steel 

PVC 

DI 

PE 

 

Pipe Diameters (mm) 
100, 141, 150, 176, 200, 250, 300, 350, 400, 500, 600, 

700, 800, 900 

150, 200, 300, 400, 500, 

700 

Maximum Pressure 

(m) 
93 77 

Minimum Pressure 

(m) 
5 11 

Total Pipe Cost 

(109 IRR*) 
541.74 472.10 

Benefit changes (%) ---- +12.85 

*IRR= Iranian Rials 

 



Advanced Approaches in Optimizing Water Distribution Networks: A Detailed … 

 
JULY 2025, Vol 11, No 3, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

71 

Fig. 5 presents a comparative analysis of nodal pressures, without sorting, within the EPS 

scenario as implemented in the simulation model and the NLP optimization model. The results 

indicate a discernible reduction in the maximum and an augmentation in the minimum nodal 

pressures achieved through the application of the NLP methodology. Furthermore, the graphical 

representation elucidates the mitigation of pressure fluctuations within the network facilitated by 

the NLP optimization model. In Fig. 6, the network pressure distribution for various scenarios is 

depicted within the simulation model. Each distinct color corresponds to a specific pressure 

range, as delineated below: 

- Yellow denotes pressures below 18 m, 

- Cyan represents pressures ranging from 18 to 30 m, 

- Blue signifies pressures between 30 and 50 m, 

- Magenta denotes pressures spanning 50 to 60 m, 

- Pale red indicates pressures within the range of 60 to 70 m, 

- Dark red represents pressures surpassing 70 m. 

Fig. 6 illustrates that both the maximum and minimum pressures within the EPS scenario surpass 

the permissible range. Additionally, the analysis indicates an increased count of critical points 

within the network when compared to both the hourly and daily scenarios. Fig. 7 depicts the 

pressure distribution within the NLP optimization model of the network. The characteristics of 

the pressure distribution align with those delineated in Fig. 6. 
 

 
 Figure 5. Comparison of nodal pressures (not sorted) in EPS scenario (simulation model) and NLP 

optimization model 

 

 
 Figure 6. Pressure distribution in the network for different scenarios in simulation model. 
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 Figure 7. Pressure distribution in NLP optimization model 

 

In the hourly, daily, and extended period simulation (EPS) scenarios, the resiliency indices 

for the model under consideration exhibit average values of 0.071, 0.070, and 0.074, 

respectively. In contrast, the resiliency index for the NLP model is recorded at 0.069. Flexibility, 

as defined by ASCE in 1998 [36], denotes the temporal requirement for a water system to restore 

normal functioning subsequent to a failure event. Accordingly, a lower flexibility index indicates 

a heightened capacity of the network to swiftly revert to normalcy, thereby enhancing the overall 

stability of the water supply network. Consequently, the employment of the NLP yields superior 

network resiliency, contributing to a reduction in the likelihood of failures. The specific values 

of the WDS resiliency index can be found in Table 6. 

 
 Table 6. Resiliency index for simulation and optimization model 

Hour 
Simulation Model Scenario Optimization Model 

Hourly Daily EPS NLP 

1 0.051 0.042 0.054 0.041 

2 0.039 0.039 0.061 0.039 

3 0.045 0.039 0.061 0.044 

4 0.046 0.048 0.056 0.045 

5 0.045 0.047 0.038 0.038 

6 0.058 0.054 0.053 0.055 

7 0.056 0.054 0.049 0.053 

8 0.081 0.077 0.081 0.080 

9 0.080 0.082 0.083 0.081 

10 0.084 0.076 0.088 0.086 

11 0.085 0.083 0.098 0.082 

12 0.086 0.081 0.088 0.082 

13 0.088 0.083 0.085 0.084 

14 0.085 0.088 0.088 0.086 

15 0.085 0.088 0.089 0.086 

16 0.086 0.091 0.089 0.080 

17 0.083 0.092 0.082 0.084 

18 0.084 0.086 0.087 0.081 

19 0.080 0.084 0.086 0.079 

20 0.083 0.084 0.086 0.082 

21 0.087 0.081 0.085 0.080 

22 0.062 0.066 0.064 0.062 

23 0.065 0.063 0.067 0.064 

24 0.054 0.052 0.059 0.056 

Average 0.071 0.070 0.074 0.069 
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In order to strengthen and improve the hydraulic efficiency of the selected WDS in this area, 

several methods are proposed, as following:  

• In the event of a new incident within the network, it is recommended to substitute the 

damaged pipe with the segment derived from the optimization model specific to that pipe. 

Subsequent to this replacement, a re-simulation of the network using WaterGEMS 

software should be conducted to systematically investigate the impact of this alteration on 

the network status. This method facilitates the anticipation of potential future failure 

points within the network, thereby enhancing predictive maintenance strategies. 

• An additional strategy involves assessing the impact of modifying the configuration of 

pressure relief valves within the network to decrease the number of critical points. This 

approach, coupled with the replacement of damaged pipes with optimized sections, 

warrants simultaneous modeling of both considerations within WaterGEMS software. 

Such concurrent modeling endeavors yield practical outcomes that offer enhanced utility 

for WDS administrators in devising effective network management strategies. 

• An alternative approach is to advocate for the implementation of a diverse array of tools 

designed to measure network hydraulic parameters. This proactive measure aims to ensure 

that network simulation is grounded in precise and accurate data. The persuasive effort 

directed towards network administrators underscores the importance of employing a 

comprehensive suite of measurement tools, thereby enhancing the reliability and accuracy 

of the data upon which network simulations are based. 

• Establishing a dedicated network simulation team, which leverages the data acquired 

through the aforementioned measurement tools, holds the potential to significantly 

enhance the accuracy of predicting critical points within the network. This collaborative 

initiative ensures that professionals with specialized expertise can systematically analyze 

and interpret the data, leading to more precise identification and prediction of critical 

points in the network. 

 

4. Conclusion 
This study proposes a novel framework integrating NLP with hydraulic simulation tools, 

uniquely incorporating reliability and failure indices as constraints. By addressing both leakage 

reduction and network resiliency enhancement comprehensively, the approach sets a benchmark 

for cost-efficient and sustainable urban WDN management, advancing the state of the art in this 

critical area. Within this research, nodal pressures in a specified segment of the Tehran’s WDS 

were calculated through both a simulation model and an optimization model employing NLP. 

The simulation model encompassed diverse scenarios, while the optimization model introduced 

an objective function featuring variables such as pipe materials and diameters. A comparative 

analysis of the outcomes from these two models was conducted to ascertain optimized nodal 

pressures, aiming to mitigate pipe bursts and network leakage. This paper specifically contrasts 

the application of NLP in a segment of the Tehran’s WDS with the simulation model 

implemented through WaterGEMS. The overarching findings derived from this comparative 

study are: 

• The employment of NLP with an objective function incorporating variables such as pipe 

materials and diameters yields superior results, contributing to a more advantageous and 

efficient network. 

• NLP effectively decreases the maximum nodal pressures from 93m to 77m and from 5m 

to 11m, respectively, thereby mitigating the risk of leakage. 

• NLP enhances network performance by increasing the minimum nodal pressures from 
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5m to 11m. 

• The total cost of pipes incurred throughe NLP method is 12.85% lower than that of the 

simulation model. 

• NLP optimization of the WDS involves changes in both material and size of pipes. In the 

selected WDS, the number of pipe sizes is reduced from 15 to 7, and the number of pipe 

materials from Ductile Iron (DI), Polyethylene (PE), Steel, and Polyvinyl Chloride 

(PVC) to Ductile Iron and Polyethylene. 

• NLP yields an improved value for WDS resiliency index, serving as a valuable tool for 

system reliability assessment and network efficiency. A more reliable network, as 

indicated by the resiliency index, corresponds to a reduction in leakage. 
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