Application of Intelligent Models in Investigating the Energy Dissipation in Labyrinth Weirs with Various Cycles Form

Document Type : Research Paper

Authors

1 Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran.

2 School of Engineering, University of St. Thomas, St. Paul, MN 33901, USA.

10.22055/jhs.2025.48309.1329

Abstract

Weirs play a crucial role as hydraulic structures in the regulation and control of water flow. This study investigates the relative energy dissipation in labyrinth weirs, examining various configurations, scales, and cycle types, using advanced computational models like Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). In SVM modelling, the results from different kernel functions reveal that the Radial Basis Function (RBF) kernel outperforms polynomial, linear, and sigmoid kernels in predicting relative energy dissipation. For the RBF kernel, the statistical metrics were found to be (R=0.907), (Mean RE%=1.38), (RMSE=0.0153), and (KGE=0.744) in test phase. where RE, Mean RE, RMSE and KGE represent the Relative Error, Mean Relative Error, Root Mean Square Error and Kling Gupta Efficiency, respectively. In contrast, in the ANN model, the multilayer perceptron (MLP) network showed higher accuracy than the RBF network, achieving 0.969, 0.73%, 0.007, and 0.968 for the same indicators. For the RF model, these values were recorded as 0.878, 1.78%, 0.0192, and 0.362, respectively. Comparative analysis indicates that the ANN model offers superior predictive performance over SVM and RF models. Additionally, non-linear polynomial regression equations, derived from dimensionless parameters, are proposed for estimating relative energy dissipation. Notably, single-cycle weirs exhibited the greatest energy dissipation among the configurations studied.

Keywords

Main Subjects


  1. Hay, N., & Taylor, G. (1970). Performance and design of labyrinth weirs. Journal of the Hydraulics Division, 96(11), 2337-2357.
  2. Tullis, B. P., Young, J. C., & Chandler, M. A. (2007). Head-discharge relationships for submerged labyrinth weirs. Journal of hydraulic engineering, 133(3), 248-254.
  3. Kumar, S., Ahmad, Z., & Mansoor, T. (2011). A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs. Flow measurement and instrumentation, 22(3), 175-180.
  4. Monjezi, R., Heidarnejad, M., Masjedi, A., Purmohammadi, M. H., & Kamanbedast, A. (2018). Laboratory investigation of the Discharge Coefficient of flow in arced labyrinth weirs with triangular plans. Flow Measurement and Instrumentation, 64, 64-70.
  5. Azimi, A. H., & Hakim, S. S. (2019). Hydraulics of flow over rectangular labyrinth weirs. Irrigation Science, 37(2), 183-193.
  6. Ayaz, M., & Mansoor, T. (2021). Development of ANN model for discharge prediction and optimal design of sharp-crested triangular plan form weir for maximum discharge using linked ANN–optimization model. Water Supply, 21(6), 3027-3041.
  7. Samadi, A., Salmasi, F., Arvanaghi, H., & Mousaviraad, M. (2022). Effects of geometrical parameters on labyrinth weir hydraulics. Journal of Irrigation and Drainage Engineering, 148(10), 06022006.
  8. Ben Said, M., & Ouamane, A. (2022). Performance of rectangular labyrinth weir–an experimental and numerical study. Water Supply, 22(4), 3628-3644.
  9. Zare, H., Vaghefi, M., Mahmoudi, A., & Behroozi, A. M. (2023). Experimental exploration of flow hydraulics and discharge coefficient for an inclined circular labyrinth weir. Water Resources Management, 37(11), 4521-4536.
  10. Shehata, A. H., Youssef, T. F., Hamada, H. A., & Samy, A. (2024). Optimizing Trapezoidal Labyrinth Weir Design for Enhanced Scour Mitigation in Straight Channels. Water, 16(17), 2443.
  11. Parsaie, A., & Haghiabi, A. H. (2019). The hydraulic investigation of circular crested stepped spillway. Flow Measurement and Instrumentation, 70, 101624.
  12. Zhou, Y., Wu, J., Ma, F., & Qian, S. (2021). Experimental investigation of the hydraulic performance of a hydraulic-jump-stepped spillway. KSCE Journal of Civil Engineering, 25, 3758-3765.
  13. Biabani, R., Salmasi, F., Nouri, M., & Abraham, J. (2022). Flow over embankment gabion weirs in free flow conditions. Journal of Hydro-Environment Research, 44, 65-76.
  14. Salmasi, F., & Abraham, J. (2023). Hydraulic characteristics of flow over stepped and chute spillways (case study: Zirdan Dam). Water Supply, 23(2), 851-866.
  15. Mohammadzadeh-Habili, J., Heidarpour, M., & Samiee, S. (2018). Study of energy dissipation and downstream flow regime of labyrinth weirs. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 42, 111-119.
  16. Ghaderi, A., Daneshfaraz, R., Dasineh, M., & Di Francesco, S. (2020). Energy dissipation and hydraulics of flow over trapezoidal–triangular labyrinth weirs. Water 12 (7): 1992.
  17. Haghiabi, A. H., Nou, M. R. G., & Parsaie, A. (2022). The energy dissipation of flow over the labyrinth weirs. Alexandria Engineering Journal, 61(5), 3729-3733.
  18. Idrees, A. K., & Al-Ameri, R. (2023). Investigation of flow characteristics and energy dissipation over new shape of the trapezoidal labyrinth weirs. Flow Measurement and Instrumentation, 89, 102276.
  19. Selim, T., Hamed, A. K., Elkiki, M., & Eltarabily, M. G. (2024). Numerical investigation of flow characteristics and energy dissipation over piano key and trapezoidal labyrinth weirs under free-flow conditions. Modeling Earth Systems and Environment, 10(1), 1253-1272.
  20. Vapnik VN (1995) The nature of statistical learning theory. Springer-Verlag, New York
  21. Daneshfaraz, R., Santos, C. A. G., Norouzi, R., Kashani, M. H., AmirRahmani, M., & Band, S. S. (2023). Prediction of drop relative energy dissipation based on Harris Hawks Optimization algorithm. Iranian Journal Of Science And Technology, Transactions Of Civil Engineering, 47(2), 1197-1210.
  22. Norouzi, R., Sihag, P., Daneshfaraz, R., Abraham, J., & Hasannia, V. (2021). Predicting relative energy dissipation for vertical drops equipped with a horizontal screen using soft computing techniques. Water Supply, 21(8), 4493-4513.
  23. Al-Bulushi, N. I., King, P. R., Blunt, M. J., & Kraaijveld, M. (2012). Artificial neural networks workflow and its application in the petroleum industry. Neural Computing and Applications, 21, 409-421.
  24. Sun, D., Lonbani, M., Askarian, B., Jahed Armaghani, D., Tarinejad, R., Thai Pham, B., & Huynh, V. V. (2020). Investigating the applications of machine learning techniques to predict the rock brittleness index. Applied Sciences, 10(5), 1691.
  25. Jahed Armaghani, D., Asteris, P. G., Askarian, B., Hasanipanah, M., Tarinejad, R., & Huynh, V. V. (2020). Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability, 12(6), 2229.
  26. Daneshfaraz, R., Norouzi, R., Abbaszadeh, H., & Azamathulla, H. M. (2022). Theoretical and experimental analysis of applicability of sill with different widths on the gate discharge coefficients. Water Supply, 22(10), 7767-7781.
  27. Abbaszadeh, H., Daneshfaraz, R., Sume, V., & Abraham, J. (2024). Experimental investigation and application of soft computing models for predicting flow energy dissipation in arc-shaped constrictions. AQUA—Water Infrastructure, Ecosystems and Society, 73(3), 637-661.
  28. Daneshfaraz, R., Norouzi, R., Ebadzadeh, P., & Kuriqi, A. (2023). Influence of sill integration in labyrinth sluice gate hydraulic performance. Innovative Infrastructure Solutions, 8(4), 118.
  29. Crookston, B. M., & Tullis, B. P. (2012). Labyrinth weirs: Nappe interference and local submergence. Journal of Irrigation and Drainage Engineering, 138(8), 757-765.