Effect of Scour Hole on Lateral Buckling of Offshore Snaked Lay Pipeline

Document Type : Research Paper


1 Department of Civil Engineering, Persian Gulf University, Bushehr, Iran.

2 Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudi, Malaysia.


Submarine pipeline is one of the most popular research filed that many researchers focus on solving the issue of buckling of pipeline. The snaked laying is an effective method to control the lateral buckling. The scour below offshore pipeline may affect the efficiency and performance of the snake lay pipeline. The objective of this study was to investigate the effect of scour hole on the buckling of seawater pipelines. A three-dimensional numerical model developed to investigate the effect of scour below offshore pipeline subjected to wave and current by using Abaqus software and Aqua Module. The results indicated that vertical deformation of straight pipeline increased by increasing scour hole depth. This value changed 4.85 cm to 32.87 for holes 11 to 200 cm respectively, but these parameters of the snake lay pipelines were not affected by the presence of scour hole. Moreover, the effective axial force of snacked lay pipelines reduced 5 times in comparison to straight pipeline by applying wave and current. The results indicated that the value of stress of snaked-lay pipeline was independent on scour hole depth. Therefore, this pipeline was effective method to limit and control buckling even in the presence of scour below it


  1. Ahmad N., Bihs H., Myrhaug , Kamath A., Arntsen Ø.A., (2018), “Three-dimensional numerical modelling of wave-induced scour around piles in a side-by-side arrangement.” Coast. Eng. 132–151.
  2. Hu R., Wang X., Liu H., Leng H. (2022).” Scour Protection of Submarine Pipeline Using Ionic Soil Stabilizer Solidified Soil” J of Mar. Sc. Eng, 9, 10(76), 1-17.
  3. Roche M. (2007). "Corrosion management: a key issue in pipeline integrity". Int. Petro. Tech. Conf.
  4. Hong Z., Liu R., Liu W., Yan S. (2015). "A lateral global buckling failure envelope for a high temperature and high pressure (HT/HP) submarine pipeline." Ocean Res, 51(1),17- 128.
  5. Chi Y.S., and Chiou J.Y. (1995). "Buckling of offshore pipelines". Int Offshore. Polar. Eng Conf., Netherlands.
  6. Simonsen A. (2014). "Inspection and Monitoring Techniques for Un-bonded Flexible Risers and Pipelines". Master Thesis. University of Stavanger, Norway.
  7. Det Norske Veritas, (2007). “Recommended Practice DNVRP-F110: Global buckling of submarine pipelines”. Hovik, Norway.
  8. Hobbs R.E. (1981). "Pipeline buckling caused by axial loads". J. Of Constr. Steel Res. 1 (2), 2– 10.
  9. Hobbs R.E. (1984). "In-service buckling of heated pipelines". J. Transp. Eng. 110 (2), 175–189.
  10. Taylor N., and Gan, A.B. (1986a). "Refined modelling for the lateral buckling of submarine pipelines". J. Of Constr. Steel Res. 6 (2), 143–162.
  11. Taylor N., and Gan A.B. (1986b). "Submarine pipeline buckling-imperfection studies". Thin- Walled Struct. 4 (4), 295–323.
  12. B. (1987). "Refined modelling for the vertical buckling of Taylor, N., and Gan, submarine pipelines". J. Of Constr. Steel Res. 7 (1), 55–74.
  13. Taylor, N., and Tran, V. (1993). “Prop-imperfection subsea pipeline buckling “. Mar. Struct. 6 (4), 325–358.
  14. Taylor N., and Tran V., (1996). "Experimental and theoretical studies in subsea pipeline Buckling”. Mar. Struct. 9 (2), 211–257.
  15. Miles D.J., and Calladine, C.R. (1999). "Lateral thermal buckling of pipelines on the sea bed". J. Appl. Mech. 66 (4), 891–897.
  16. Andreuzzi F., and Perrone A. (2001). "Analytical solution for upheaval buckling in buried pipeline". Computer Methods. Appl. Mech. And Eng. 190 (39), 5081–5087.
  17. Sharifi S.M.H., Taheri A., Faragi Poor M.B. (2019). “Assessment of Offshore Pipeline Reliability against Lateral Buckling IJMT 12 41-48.
  18. Cia J., Le Grognec P. (2022). “Lateral buckling of submarine pipelines under high temperature and high pressure—A literature review”. Ocean Eng. 224, 110254.
  19. Liu R., Basu P., Xiong H. (2015). "Laboratory tests and thermal buckling analysis for pipes buried in Bohai soft clay". Mar. Struct. 43, 44–60.
  20. Guha I., White D.J., Randolph M. F. (2020). “Parametric solution of lateral buckling of submarine pipelines” Appl Ocean Res. 98, 102077
  21. Hu R., Wang X., Liu H., Leng H. (2022).” Lateral Buckling of Subsea Pipelines Triggered by Sleeper with a Nonlinear Pipe–Soil Interaction Model”. J. Mar. Sci. Eng. 10(76), 1-17.
  22. Wang L., Shi R., Yuan F. Guo Z., Yu L. (2011). "Global buckling of pipelines in the vertical plane with a soft seabed". Appl. Ocean Res. 33 (2), 130–136.
  23. Wang Z., Chen Z., Liu H., (2015a). "Numerical study on upheaval buckling of pipe-in-pipe systems with full contact imperfections". Eng. Struct. 99, 264–271.
  24. Wang Z., Chen Z., Liu H., Bu Y., (2015b). "Static and dynamic analysis on upheaval buckling of unburied subsea pipelines". Ocean. Eng. 104, 249–256.
  25. Zeng X., and Duan M., (2014). "Mode localization in lateral buckling of partially embedded submarine pipelines". Int. J. Solids Struct. 51 (10), 1991–1999.
  26. Zeng X., Duan M., Che X. (2014). "Critical upheaval buckling forces of imperfect pipelines". Appl. Ocean Res. 45, 33–39.
  27. Rezaie Y., Sharifi S.M.H., Rashedi G.R. (2021). “Post Buckling Analysis with Different Configurations of Snaked Laid Pipelines” IJMT 15 67-78.
  28. Wang Y., Zhang, X., Zhao Y., Chen H., Duan, M., Estefen, S.F. (2017a). “Perturbation analysis for upheaval buckling of imperfect buried pipelines based on nonlinear pipe soil interaction”. Ocean. Eng. 132, 92–100.
  29. Seth D., Manna B., Shahu J.T., Fazeres-Ferradosa T., Pinto F. T., Rosa-Santos P. J.(2021). ” Buckling Mechanism of Offshore Pipelines: A state of the Art” J of Mar. Sc. Eng, 9, 1074, 1-37
  30. Zhu J., Attard M.M., Kellermann D.C. (2015). "In-plane nonlinear localised lateral buckling of straight pipelines". Eng. Struct. 103, 37–52.
  31. Wang Z., and Van der Heijden G.H.M. (2017). "Localised lateral buckling of partially embedded subsea pipelines with nonlinear soil resistance". Thin-Walled Struct. 120, 408-420
  32. Bruton D., White D.J., Cheuk C.Y., Bolton M.D., Carr, M. (2006). "Pipe-soil interaction behavior during lateral buckling, including large-amplitude cyclic displacement tests by the SAFEBUCK JIP". In: Offshore Tech. Conf, 1–20.
  33. Wang Z., Tang Y., Feng H., Zhao Z., Liu H., (2017b). "Model test for lateral soil resistance of partially embedded subsea pipelines on sand during large-amplitude lateral movement". J. Of Coast. Res. 333, 607–618.
  34. Dingle H.R.C., White D.J., Gaudin C. (2008). "Mechanisms of pipe embedment and lateral breakout on soft clay". Can. Geotech. J. 45 (5), 636–652.
  35. Peek R., and Yun H. (2007). "Flotation to trigger lateral buckles in pipelines on a flat seabed". J. Eng. Mech. 4 (442), 442–451.
  36. Peek R., and Kristiansen N.Ø. (2009). "Zero-radius bend method to trigger lateral buckles". J. Transp. Eng. 135 (12), 946–952.
  37. Rundsag J. O., Tornes, K., Cumming G., Rathbone A. D., Robert C. (2008). “Optimised Snaked-Lay Geometry”. 18th Int Offshore. Polar. Eng Conf.
  38. Li Z.G., Wang C., He N., Zhao D.Y. (2008). "An overview of deep-water pipeline laying technology". China Ocean Eng. 22 (3), 521–532.
  39. Wang Z, Chen Z, He Y, Liu H. (2015c). "Optimized configuration of snaked-lay subsea pipelines for controlled lateral buckling method". Proc.25th Int. Offshore and Polar Eng. Conf.
  40. Liu Y. (2015). "Distance Between Two Snaked-lay of Subsea Pipeline". Proc. Int Conf on Mfg. Sci. Eng., ICMSE 2015
  41. Liu W. (2018). “Study on snaked laying method and the influence to control lateral buckling”. IOP Conf. Ser.: Earth Environ. Sci. 170 022015.
  42. Seth D., Manna B., Shahu J.T., Fazeres-Ferradosa T., Taveira-Pinto F., Rosa-Santos P., Pinto F.V.T. (2021). “Offshore pipeline buried in Indian coastal clay: Buckling behavior analysis”. Ships. Offshore Struc. 2021, 1–16.
  43. Fredsøe J. (2016). "Pipeline–seabed interaction". J. Waterway, Port, Coastal, Ocean. Eng. 142 (6), 1–20.
  44. Leckie S.H.F., Draper S., White D.J., Cheng L., Fogliani A. (2015). "Lifelong embedment and spanning of a pipeline on a mobile seabed". Coast. Eng. 95, 130–146.
  45. Draper S., An H., Cheng L., White D.J., Griffiths T., (2015). "Stability of subsea pipelines during large storms". Phil. Trans. R. Soc. A 373 (2033), 20140106.
  46. Myrhaug D., Fu P., Ong M.C. (2017). "Scour below pipelines due to random waves along and random waves plus currents on mild slope". Ocean Syst. Eng. 7 (3), 275-298.
  47. Palmer A.C., Ellinas C.P., Richards D.M., Guijt J. (1990). "Design of submarine pipelines against upheaval buckling". Houston, TX: Offshore Tech. Conf. 551-560.
  48. Zhang X., Duan M., Li T. (2015). "Numerical Parameter Study on Lateral Buckling Response of Submarine Pipe-in-Pipe pipelines". The 2015 World Congress on Adv. in Struct. Eng and Mech. (ASEM 15) Inchen, Korea.
  49. Bahari M.R., Motamed nejhad A. (2008). “Lateral buckling of offshore pipeline under high pressure and high temperature”. J. Civil Eng of Islamic Azad university, 21-29 (In Persian).
  50. Yasa R., and Etemad Shahidi A., (2008). “Prediction of scouring around offshore pipeline”. 12th Marine Industry Conf. Zibakenar, Iran. (In Persian).
  51. Arya A.K., and Shingan B. (2012). "Scour-mechanism, detection and mitigation for subsea pipeline integrity". Int. J. Eng. Res. Technol.
  52. Veritas D. N. (2007)."Global buckling of submarine pipelines–structural design due to high temperature/high pressure". Recommended Practice, DNV RP-F110, Veritasveien, Norway
  53. Reda A.M., and Forbes G.L. (2012). "Investigation into the dynamic effects of lateral buckling of high temperature/high pressure offshore pipelines". Proc. Ann. Conf. Australian Acoustical Society. Fremantle, Australia, 1-11.
  54. Yang X. L., Jin Q. Y, Ma J. Q. (2012). "Pressure from surrounding rock of three shallow tunnels with large section and small spacing". J. of Central S. University, 19(8), 2380−2385.
  55. Bai Y., and Bai Q. (2005). “Subsea Pipelines and Risers”. 1st edition Elsevier.